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Progressive aggregation of a-synuclein (o-Syn) in the midbrain, hypothala-
mus and thalamus is linked to Parkinson’s disease (PD), one of the fastest
growing neurodegenerative diseases in the U.S. Studies of families with PD
history revealed several mutations that are responsible for the early-onset
(A30P, E46K, A53T) and late-onset (H50Q) forms of PD. A growing body
of evidence indicates that phospho-/sphingolipids and cholesterol alter the
aggregation properties of wild-type (WT) a-syn. However, the effects of
these lipids on the rate of a-syn mutants remain unclear. In the current
study, we determined the aggregation rates of A30P, E46K, A53T, H50Q
and WT o-syn in the presence of large unilamellar vesicles composed of
phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol (Cho)—the
key lipids of neuronal membranes. We also utilised a set of biophysical
methods to reveal the extent to which lipids alter the morphology and sec-
ondary structure of amyloid fibrils. We found that familial mutations
uniquely altered a-syn interactions with lipid bilayers, which resulted in the
altered rate of protein aggregation in the presence of lipid bilayers. Fur-
thermore, A30P mutation fully disabled a-syn interaction with LUVs, while
E46K, AS53T and H50Q mutations altered cytotoxicity of o-syn fibrils
formed in the presence of lipid bilayers. These results suggest that changes
in plasma membrane lipid profiles may have a strong effect on the onset
and progression of PD in individuals with familial mutations.

Introduction
Lewy bodies (LBs) are

intraneuronal

inclusions of oa-syn aggregation, as well as change the

observed in midbrain, hypothalamus and thalamus of
patients diagnosed by Parkinson’s disease (PD) [1-3].
This pathology affects over 90,000 people in the U.S.
alone with combined direct and indirect costs reaching
$52 billion per year [4]. Microscopic analysis of LBs
revealed the presence of lipid bilayers and a-synuclein
(o-syn) fibrils [5-8]. Numerous in vitro studies
demonstrated that lipid membranes could alter the rate

Abbreviations

secondary structure of amyloid fibrils [9-15]. Specifi-
cally, Hannestad and co-workers found that a-syn not
only aggregated on the surfaces of lipid membranes,
but strongly perturbed membrane integrity [16]. The
Claessens group showed that a-syn-lipid interactions
could be altered by the charge and the size of lipid ves-
icles [17-23]. Importantly, lipid-induced changes in the
secondary structure of o-syn oligomers and fibrils

a-Syn, alpha-synuclein; AFM, atomic force microscopy; AFM-IR, atomic force microscopy infrared spectroscopy; Cho, cholesterol; DMPS,
1,2-dimyristoyl-sn-glycero-3-phospho-L-serine; DOPC, 1,2-dioleoyl-sn-glycero3-phosphocholine; DOPS, 1,2-dioleoyl-sn-glycero-3-
phospho-L-serine; DPPC, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine; DMPC, 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine; FTIR,
Fourier-transformed Infrared spectroscopy; LBs, Lewy bodies; LDH, lactate dehydrogenase; LUVs, large unilamellar vesicles; PBS,
phosphate buffer saline; PD, Parkinson’s disease; POPS, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-t-serine; QCL, quantum-cascade laser;
SM, sphingomyelin; t,, half-time; ThT, thioflavin T; tiag, lag-time; WT, wild-type.
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uniquely alter their cytotoxicity [9,24]. These effects
are determined by the chemical structure of lipids, as
well as by the length and saturation of fatty acids
(FAs) in the lipids [11,25,26].

DNA sequencing of patients with a family history of
PD allowed for the identification of several mutations that
were linked to the early-onset (A30P, E46K, and A53T)
and late-onset (H50Q) forms of PD [27]. The Galvagnion
group found that anionic 1,2-dimyristoyl-sn-glycero-3-
phospho-L-serine (DMPS) accelerated the aggregation
rate of WT a-syn, as well as A30P, and AS5S3T a-syn
mutants [12]. Our group showed that this effect could be
altered by the length and saturation of FAs in PS [28].
Specifically, C14:0 PS (DMPS) caused significantly stron-
ger acceleration of the WT a-syn compared to C18:0 (1,2-
distearyl-sn-glycero-3-phospho-L-serine, DSPS) and PS
with  unsaturated FAs  (1,2-dioleoyl-sn-glycero-3-
phospho-L-serine (DOPS) and 1-palmitoyl-2-oleoyl-sn-
glycero-3-phospho-L-serine (POPS) [28]. However, this
relationship was not observed for A30P and A53T a-syn
mutants. Furthermore, WT a-syn:DSPS fibrils exerted
much weaker cytotoxic effects on rat dopaminergic neu-
rons compared to WT o-syn. However, cytotoxicity of
A30P:DSPS and AS3T:DSPS fibrils were similar to A30P
and AS3T a-syn, respectively [28]. These results indicate
that familial mutations in o-syn change protein-lipid
interactions. Holman and co-workers recently reported
that WT a-syn formed in the presence of 1,2-dipalmitoyl-
sn-glycero-3- phosphocholine (DPPC), 1,2-dioleoyl-sn-
glycero3-phosphocholine (DOPCQ), 30-bis[1,2-
distearoylsn-glycero-3-phospho]-glycerol and 30-bis[1,2-
dilinoleoyl-sn-glycero-3-phospho]-glycerol, as well as mix-
tures of these phospholipids, exert significantly higher cell
toxicity compared to the protein aggregates formed in the
lipid-free environment [29]. Furthermore, diet supplemen-
tation of these lipids to C. elegans altered their lifespan
[29]. Recently, Matveyenka and co-workers found that
cholesterol strongly accelerated the rate of a-syn aggrega-
tion [24]. Specifically, an increase in the concentration of
cholesterol from 10% to 45% in large unilamellar vesicles
(LUVs), composed of  dipalmitoyl-sn-glycero-3-
phosphatidylcholine (DPPC), increased the rate of WT
a-syn aggregation [24]. However, the effect of cholesterol
on the aggregation properties of o-syn mutants remains
unclear.
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In this study, we investigate the relationship between
the cholesterol concentration and the rate of A30P,
E46K, AS53T, H50Q and WT a-Syn aggregation. We
also determine the effect of sphingomyelin (SM) and
1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine
(DMPC) on the aggregation rate of these mutants.
Using atomic force microscopy (AFM) and
nano-Infrared spectroscopy, also known as atomic
force microscopy Infrared (AFM-IR) spectroscopy, we
examined the morphology and secondary structure of
A30P, E46K, AS53T, H50Q and WT o-Syn fibrils
formed in the presence of LUVs composed of 10:90,
45:55, and 60:40 mol:mol ratios of cholesterol:DMPC
that represent low, physiological and elevated concen-
trations of cholesterol in plasma membranes of neu-
rons [30]. We also investigated the effect of LUVs
composed of 10:90, 24:66, and 40:60 mol:mol ratios of
SM:DMPC, which aim to model plasma membranes
with low, normal, and high concentrations of SM [30].
Finally, cell assays were used to investigate the rela-
tionship between the secondary structure of A30P,
E46K, AS53T, H50Q and WT o-Syn fibrils and their
toxicity to rat dopaminergic cells.

Results

Kinetic studies of protein aggregation in the
presence of LUVs with different concentrations
of DMPC, Cho and SM, as well as in the lipid-fee
environment

In the lipid-free environment, WT o-syn aggregated
with a well-defined lag-phase (fj,, = 12.48 & 1.14 h)
that was extended to (f,, = 29.25 & 3.334 h) in the
presence of 100% DMPC LUVs, Fig. 1. With an
increase in the concentration of Cho in the LUVs, #,,
gradually decreased from 22.61 + 0.44 h (10:90 Cho:
DMPC) to 12.81 £ 0.78 h (60:40 Cho:DMPC). Based
on these results, we could conclude that Cho acceler-
ated, while DMPC decelerated WT a-syn aggregation.
Our results also indicate that LUVs, except 45:55 Cho:
DMPC, did not have a significant effect on the rate of
fibril formation (#,,), Fig. 1. Thus, DMPC and Cho:
DMPC LUVs primarily interact with monomeric WT
o-syn, rather than being involved in fibril elongation

Fig. 1. Lipids alter the rate of WT and A30P a-syn aggregation. Kinetic studies of WT and A30P a-syn aggregation in the presence of LUVs
with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM).
Thioflavin T plots (A, C, E, G) with corresponding bar graphs (B, D, F, H) of t,q and ;,,. Each curve shown in panels A, C, E and G is the
average of three sample replicates (n = 3). The graphical data are presented as the mean + SEM. According to one-way ANOVA,

**P < 0.01; ***P < 0.001. NS, nonsignificant differences.
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and secondary nucleation. ThT assay also revealed
that, unlike Cho, SM did not have an effect on either
tiag OT 112 of WT a-syn aggregation.

Interestingly, A30P mutant of a-syn fully disabled
protein—lipid interactions. This conclusion could be
made based on ThT analyses of A30P a-syn interac-
tion with DMPC, SM:DMPC, and Cho:DMPC LUVs.
We also found that DMPC LUVs delayed the lag-
phase of E46K o-syn (f,4 = 26.74 £ 0.85 h) that
aggregated much faster (7,0 =8.44 £0.25 h) com-
pared to WT a-syn (#,, = 12.48 £ 1.14 h), Fig. 2. Our
results also showed that 60:40 Cho:DMPC LUVs
accelerated (#j,, = 9.61 &+ 0.21 h) the aggregation rate
of E46K a-syn much stronger than 10:90 Cho:DMPC
LUVs (f, = 11.24 £ 0.81 h). However, this effect was
not as pronounced for 45:55 Cho:DMPC
(tlag = 19.92 £ 0.75 h). Thus, we can conclude that the
E46K mutation significantly altered o-syn—Cho inter-
actions. These conclusions are further supported by
the analyses of f;, of E46K o-syn aggregation. We
also found that LUVs that contained 10%
(tag = 17.43 £ 0.59 h), 24% (fjay = 12.75 £ 0.71 h),
and 40% (fj,g = 18.41 £ 0.95 h) of SM significantly
delayed the lag-phase of E46K a-syn aggregation
(hag = 8.44 £ 0.25 h), Fig. 2. Based on these results,
we can conclude that E46K mutation in o-syn strongly
altered protein—SM interactions.

ThT kinetics revealed that DMPC and Cho had sim-
ilar effects on H50Q a-syn aggregation as for WT a-
syn. Specifically, DMPC LUVs delayed the lag-phase
of H50Q o-syn aggregation (f,, =4.31 &£ 0.21 h),
while this effect was mitigated by the presence of Cho
in such LUVs. Specifically, 60:40 Cho:DMPC LUVs
had the strongest acceleration effect on the lag-phase
(tag = 2.01 £0.32 h) compared to 10:90 (fj,e =
2.71 £ 0.02 h) and 45:55 (1, = 3.00 £ 0.08 h) Cho:
DMPC LUVs, Fig. 2. The same effect of Cho was
observed on the rate (#;,) of protein aggregation. We
found an increase in f;, with an increase in the con-
centration of Cho in LUVs exposed to H50Q a-syn.
We also found that H50Q o-syn exhibited similar
interactions with SM as E46K a-syn, Fig. 2. Specifi-
cally, a delay in #,, was observed in the presence of
LUVs with 10%, 24% and 40% of SM #,, =
441 £0.05h, #,, =4.04 £0.08hand 1,, =433 £
0.01 h, respectively. Similar delay was observed in ¢,

A. Ali et al.

for 24:76 SM:DMPC and 40:60 SM:DMPC LUVs
l1/2 =13.64 £ 0.05 h, t1/2 = 12.84 £+ 0.08hand t|/2 =
12.83 £ 0.01 h, respectively. These results indicate that
a H50Q mutation did not significantly alter protein—
Cho interaction. However, this mutation had a strong
impact on a-syn—SM interactions.

ThT assay showed that AS53T o-syn (fj,e =
9.31 + 0.24 h) aggregated slightly faster than WT
o-syn (fjae = 12.48 £ 1.14 h), Fig. 3. Similar to WT a-
syn, DMPC LUVs delayed the lag-phase of AS3T o-
syn aggregation (f,, = 12.35 & 0.21 h), while low
(thag = 7.58 £ 0.50 h) and medium (f,, = 7.684 &+
0.32 h) concentrations of Cho in LUVs shortened the
lag-phase of AS53T a-syn aggregation. However, high
concentrations of Cho, on the other hand, strongly
delayed the lag-phase (#j,, = 12.81 &+ 0.81 h) of A53T
a-syn aggregation, Fig. 3. These results indicate that
AS53T mutation altered protein—Cho interactions.
These conclusions are further supported by the kinetic
analysis of A53T a-syn aggregation in the presence of
SM LUVs. Specifically, we found that an increase in
the concentration of SM in LUVs resulted in the accel-
eration of AS3T a-syn aggregation, which was not
observed for WT a-syn. Based on these results, we can
conclude that mutations in o-syn drastically alter
protein—lipid interactions, which results in the increase
or decrease of the lag-phase of the a-syn aggregation
and the rate of fibril formation.

Morphological characterisation of protein
aggregates formed in the presence of LUVs with
different concentrations of DMPC, Cho and SM,
as well as in the lipid-free environment

Microscopic analysis of amyloid samples revealed that in
the lipid-free environment, WT a-syn formed long fibrillar
species with heights ranging from 9 to 18 nm, Figs 4-6
and Table S1. Significantly shorter and thinner fibrils were
observed in WT a-syn:DMPC, as well as in WT o-syn:
(10:90 SM:DMPC) and WT a-syn:(24:76 SM:DMPC).
However, in the presence of 60:40 SM:DMPC, WT a-syn
developed long fibrillar structures that were not observed
at low concentrations of SM in LUVs, Figs 4-6 and
Table S1. Thus, we can conclude that DMPC and high
concentrations of SM substantially alter the morphology
of WT a-syn fibrils. We also found that the presence of

Fig. 2. Lipids alter the rate of E46K and H50Q a-syn aggregation. Kinetic studies of E46K and H50Q o-syn aggregation in the presence of
LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM).
Thioflavin T plots (A, C, E, G) with corresponding bar graphs (B, D, F, H) of #.q and ;. Each curve shown in panels A, C, E, G is the
average of three sample replicates (n = 3). The graphical data are presented as the mean + SEM. According to one-way ANOVA,
*P < 0.05; **P < 0.01; ****P < 0.001; ****P < 0.0001. NS, nonsignificant differences.
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Fig. 3. Lipids alter the rate of AB3T a-syn aggregation. Kinetic studies of AbB3T a-syn aggregation in the presence of LUVs with different
concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM). Thioflavin T plots (A
and C) with corresponding bar graphs (B and D) of t,g and t;,. Each curve shown in panels A, C, E and G is the average of three sample
replicates (n=3). The graphical data are presented as the mean + SEM. According to one-way ANOVA, *P < 0.05; **P < 0.01;

*xxP < (0.001; ****P < 0.0001. NS, nonsignificant differences.

Cho in DMPC LUVs did not substantially alter the mor-
phology of WT a-syn aggregates. Specifically, in all sam-
ples, we observed fibrillar structures with similar heights
(6-18 nm) to those formed in the lipid-free environment,
Figs 4-6 and Table S1. These results are in good agree-
ment with experimental findings that were previously
reported by our group for DPPC:Cho LUVs [24]. Thus,
we can conclude that Cho does not significantly change
the morphology of WT a-syn aggregates.

No substantial morphological changes were also evi-
dent in A30P a-syn:lipid samples compared to the
fibrils observed in A30P a-syn. Specifically, in all sam-
ples formed by A30P a-syn, morphologically similar
fibrils with 6-18 nm in height were observed. Our
results show that in the lipid-free environment, E46K
a-syn formed only short fibrillar species with 6-12 nm
in height, Figs 4-6 and Table S1. Morphologically
similar species, however, with larger lengths, were

observed in E46K o-syn:DMPC and E46K o-syn:
(Cho:DMPC) samples, Figs 4-6. These results indicate
that both DMPC and Cho did not significantly alter
the morphology of E46K a-syn fibrils. At the same
time, the presence of SM in LUVs resulted in the for-
mation of thick and long protein aggregates. Based on
these results, we could conclude that SM drastically
altered the morphology of E46K a-syn fibrils.

In the lipid-free environment, H50Q o-syn aggre-
gated, forming long fibrils with 6-18 nm in height.
Morphologically similar fibrils were observed in H50Q
a-syn:DMPC, H50Q a-syn:(Cho:DMPC), and H50Q
o-syn:(SM:DMPC) samples, Figs 4-6 and Table SlI.
These results indicate that neither DMPC, Cho or SM
substantially alter the morphology of HS50Q a-syn
aggregates. The same conclusions could be made about
AS53T a-syn aggregates. In the absence of LUVs, A53T
a-syn formed long fibrils that were 6-15 nm in height,

© 2025 Federation of European Biochemical Societies.
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Fig. 4. Lipids alter the morphology a-syn aggregates. Atomic force microscopy images of WT, A30P, E46K, H50Q and A53T a-syn
aggregates formed in the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and
cholesterol (Cho), as well as in the lipid-free environment. Scale bars are 500 nm. Spherical aggregates are oligomers; prolonged rope-like
aggregates are fibrils. Height values of Z axes are summarised in Table S1.

Figs 4-6 and Table S1. Morphologically similar fibrils
were found in AS3T o-syn:DMPC, AS3T a-syn:(Cho:
DMPC), and A53T a-syn:(SM:DMPC) samples. Thus,
these findings indicated that the presence of LUVs
with DMPC, SM and Cho had no effect on the mor-
phology of AS3T a-syn fibrils.

Finally, AFM revealed the presence of LUVs (H50Q
o-syn:(SM:DMPC), A53T o-syn:(SM:DMPC), and

© 2025 Federation of European Biochemical Societies.

A30P a-syn:DMPC) and lipid droplets (A30P o-syn:
(10:90 SM:DMPC) and A30P o-syn:(45:55 SM:
DMPC)) in some of the analysed samples. Although
intact LUVs were typically observed by themselves,
lipid droplets were surrounded by fibrils, which further
supports our own results and experimental findings
reported by other groups that lipids facilitated the
aggregation of a-syn [11-13,29].
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Fig. 5. Lipids alter the morphology of a-syn aggregates. Atomic force microscopy images of WT, A30P, E46K, H50Q and AB3T a-syn
aggregates formed in the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and
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Z axes are summarised in Table S1.
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Structural characterisation of protein aggregates
formed in the presence of LUVs with different
concentrations of DMPC, Cho and SM, as well as
in the lipid-free environment

We used CD and FTIR to perform spectroscopic anal-
ysis of protein samples after 150 h of aggregation at
37 °C and 510 rpm agitation. CD spectra acquired
from all samples had a minimum around 220 nm, indi-
cating the presence of B-sheet, Figs 7-9. The same con-
clusion could be drawn by the analysis of amide I
band in the acquired FTIR spectra. In all collected
spectra, amide I band was centred around 1630
1636 cm ™', which indicates the predominance of paral-
lel B-sheet, Figs 7-9. We hypothesised that small
variability in the peak position of amide I band could
be caused by the presence of unaggregated protein in
all samples. To overcome this issue, we utilised nano-
IR spectroscopy that allows for positioning the scan-
ning probe directly at the aggregate of interest present
in the sample and to acquire IR spectra [31-35].

AFM-IR revealed that WT oa-syn fibrils grown in
the lipid-free environment had a nearly equal (~30%)
amount of parallel, anti-parallel B-sheet, and a random
coil secondary structure. We also found that the pres-
ence of DMPC drastically lowered the amount of par-
allel B-sheet in WT a-syn fibrils, Fig. 10. However, the
presence of Cho in the LUVs did not result in struc-
tural differences in WT a-syn fibrils formed under the
experimental conditions described above. We also
found that the presence of LUVs with 10:90 SM:
DMPC ratio resulted in the formation of fibrils with a
highly rich parallel B-sheet. At the same time, WT a-
syn fibrils formed in the presence of LUVs with 24:76
SM:DMPC and 60:40 SM:DMPC had the same sec-
ondary structure as WT o-syn fibrils grown in the
lipid-free environment, Fig. 10.

We also found that a high concentration of Cho
and SM in LUVs resulted in an increase in the amount
of parallel B-sheet in A30P a-syn fibrils, Fig. 11. How-
ever, the presence of other LUVs did not alter the sec-
ondary structure of A30P o-syn fibrils. The same
conclusion could be made about E46K a-syn aggre-
gates. We observed an increase in the amount of paral-
lel B-sheet only in the protein aggregates that were
grown in the presence of 60:40 Cho:DMPC LUVs,
Fig. 12.

In HS50Q, o-syn fibrils formed in the presence of
DMPC, and we observed a decrease in the amount
of parallel B-sheet. The same decrease was observed in
the presence of 45:55 Cho:DMPC and 60:40 Cho:
DMPC LUVs, as well as in the presence of all SM
LUVs, Fig. 13. These results indicate that the

© 2025 Federation of European Biochemical Societies.
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secondary structure of H50Q o-syn fibrils is strongly
affected by Cho and SM. Finally, we found that A53T
o-syn fibrils formed in the presence of DMPC and
Cho:DMPC LUVs had the same secondary structure
as AS53T o-syn fibrils formed in the lipid-free environ-
ment, Fig. 14. Only protein aggregates that were
grown in the presence of 24:76 SM:DMPC had a sig-
nificantly lower amount of parallel B-sheet.

Based on these results, we can conclude that
DMPC, SM and Cho caused substantial changes in
the secondary structure of WT, A30P, E46K, H50Q,
and AS53T o-syn fibrils at some concentrations. This
concentration effect was directly dependent on the type
of lipid and mutation in a-syn. Additional studies are
required to fully understand the relationship between
the chemical structure of lipids, its concentration and
the effect exerted on each particular o-syn mutant.

Cytotoxicity of protein aggregates formed in the
presence of LUVs with different concentrations
of DMPC, Cho and SM, as well as in the lipid-free
environment

To examine cytotoxicity of a-syn fibrils formed in the
presence of LUVs with different concentrations of
DMPC, Cho and SM, as well as in the lipid-free envi-
ronment, rat dopaminergic neurons were used. Using
LDH assay, we investigated viability of these cells
after 24 h exposure to the fibrils. Our results indicated
that WT a-syn fibrils exerted significant toxicity to rat
dopaminergic neurons, Fig. 15. We found that the
presence of 45:55 Cho:DMPC and 60:30 Cho:DMPC
LUVs resulted in the formation of more toxic fibrils
compared to WT a-syn aggregates formed in the lipid-
free environment. These results are in good agreement
with our previous findings [36]. At the same time, the
presence of LUVs with SM did not alter the cytotoxic-
ity of WT a-syn fibrils.

Interestingly, LUVs did not alter the cytotoxicity of
A30P o-syn fibrils. At the same time, E46K o-Syn
fibrils formed in the presence of 60:40 Cho:DMPC
were found to be significantly more toxic, while those
formed in the presence of 10:90 SM:DMPC LUVs
were less toxic to the neurons, Fig. 15. LDH assay
also revealed that HS50Q and AS53T o-syn fibrils
formed in the presence of LUVs composed of DMPC,
SM and Cho were less toxic compared to H50Q and
AS53T a-syn fibrils formed in the lipid-free environ-
ment, respectively. Thus, we can conclude that for all
mutants, except A30P, a-syn—as well as for WT
a-syn—DMPC, Cho and SM alter cytotoxicity of
amyloid fibrils.
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Fig. 6. Lipids alter the morphology of a-syn aggregates. Height histograms of WT, A30P, E46K, H50Q and AB3T a-syn aggregates formed in
the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and
sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in red; DMPC in light green, (10:90 Cho:DMPC) in
green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow, (24:76 SM:DMPC) in pink, and (40:60 SM:
DMPC) in maroon. For each height profile, 10-20 individual aggregates were analysed.
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Fig. 7. Influence of lipids on the secondary structure of a-syn aggregates. CD (A, C, E, G) and normalised FTIR (B, D, F, H) spectra acquired
from WT and A30P a-syn aggregation in the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM). Amide | and Il bands originate from the vibration of amide bonds in
proteins. FTIR spectra are normalised on amide | band. For each spectrum, three individual measurements were made.
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Fig. 8. Influence of lipids on the secondary structure of a-syn aggregates. Circular dichroism (A, C, E, G) and normalised Fourier-
transformed Infrared (FTIR) (B, D, F, H) spectra acquired from E46K and H50Q o-syn aggregation in the presence of LUVs with different
concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM). Amide | and Il bands
originate from the vibration of amide bonds in proteins. FTIR spectra are normalised on amide | band. For each spectrum, three individual
measurements were made.

Discussion . . o
and hypothalamus. This small cytosolic protein is

mainly located in synaptic terminals [37]. Although
the physiologic function of a-syn is not fully

The onset and progression of PD are linked to the
abrupt aggregation of a-syn in the midbrain, thalamus

12 © 2025 Federation of European Biochemical Societies.
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vibration of amide bonds in proteins. FTIR spectra are normalised on amide | band. For each spectrum, three individual measurements were

made.

understood [38-40], there is a growing body of evi-
dence indicating the important role of a-syn in control
of the neurotransmitter release in synaptic clefts, syn-
aptic plasticity, and inflammatory response [10,41].
Intrinsically disordered, a-syn folds into an o-helical
structure in the presence of lipid membranes [12.,42].
This and other evidence indicates the importance of
lipid bilayers for protein stability. Consequently,
changes in the composition of lipid membranes could
trigger protein aggregation. NMR and fluorescence
spectroscopy demonstrated that in such cases, o-syn
binds lipids via strong electrostatic interactions that
take place between lysine and glutamic acid residues
on the N-terminus (1-60 aa) of a-Syn and lipid head-
groups [43]. a-Syn-lipid complexes are also stabilised
by hydrophobic interactions that are established
between fatty acids of lipids and the central domain
(61-95 aa) of a-Syn [44,45]. Furthermore, such o-syn—
lipid complexes irreversibly change the catalytic reac-
tivity of cytoplasmic enzymes and lysosomal lipases,
which results in PD-specific alterations of lipids in
both the brain and plasma [46].

In our previous study, we examined the effect of PS
with different length and saturation of FAs on the
aggregation properties of WT a-syn, as well as on

© 2025 Federation of European Biochemical Societies.

A30P and AS3T o-syn mutants [28]. Our results
showed that A30P and AS3T mutations significantly
altered the response of a-syn to PS LUVs compared to
WT protein. We observed significant differences in the
rate of protein aggregation, secondary structure of
A30P a-syn:PS and a-syn:AS3T fibrils, as well as the
cytotoxicity that such protein aggregates exerted on
rat dopaminergic neurons. However, it was unclear
whether such effects are unique to PS or if they are
common among a large group of lipids.

In the current study, we found that change in the
aggregation properties of E46K, AS3T, H50Q, and
WT o-syn induced by DMPC, SM and Cho change
are concentration-dependent. Similar concentration-
dependent changes were observed in the toxicity that such
protein aggregates exert on rat dopaminergic cells. We
also found that A30P mutation has reduced membrane
affinity o-syn—lipid interactions. As a result, no changes in
the aggregation rate of A30P a-Syn were observed at dif-
ferent concentrations of DMPC, Cho and SM. This con-
clusion is further supported by lipid-independent
cytotoxicity of A30P a-syn fibrils that were not observed
for other mutants and WT a-syn. It is important to note
that our results are in good agreement with those reported
by other researcher groups [47-49].

13
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Fig. 10. Influence of lipids on the secondary structure of a-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and
histograms (B and D) showing the amount of parallel B-sheet, o-helix, random coil, and B-turn, as well as antiparallel B-sheet in the
secondary structure of WT o-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in
red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,
(24:76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A-C is the average of three sample replicates
(n = 3). The graphical data are presented as the mean + SEM. According to one-way ANOVA followed by Tukey's HSD test **P < 0.01,
**xx%P < 0.0001. NS shows the absence of statistically significant differences.

In our previous study, we used cite-specific mutagen-
esis to identify charged lysines present in the N termi-
nus of a-syn that determine protein-lipid interactions
[25]. That work showed that there is more than one
lysine that is responsible for such interactions, as well
as revealing possible contributions of hydrophobic
forces in the interactions between o-syn and lipids.
The observed effect of A30P mutation in the N termi-
nus of a-syn on DMPC, SM and Cho observed in the
current study supported our hypothesis that not only
electrostatic but also hydrophobic forces play a very
important role in the interactions between o-syn and
lipids. We additionally found that DMPC and the
larger analogue of this peptide, dipalmitoylphosphati-
dylcholine (DPPC, C16:0) exerted similar effects on o-
syn aggregation. Specifically, in our previous study, we
showed that o-syn:DPPC fibrils had lower cytotoxicity
compared to a-syn fibrils formed in the lipid-free envi-
ronment [24]. Our current findings indicate that a-syn:

14

DMPC fibrils also had lower cytotoxicity compared to
a-syn fibrils formed in the absence of lipids. These
results indicate that the length of FAs in the PC plays
a less important role in a-syn—lipid interactions com-
pared to the amino acid sequence of the protein N
terminus.

It should be noted that the effect of DMPC, SM
and Cho on the protein aggregation and cytotoxicity
of amyloid aggregates directly depends on protein
amino acid composition. In our previous study, we
demonstrated that Cho accelerated the aggregation of
transthyretin [30]. Furthermore, this effect directly
depended on the concentration of Cho in LUVs. At
the same time, SM and DMPC decelerated transthyre-
tin aggregation. However, cytotoxicity of such Cho,
SM and DMPC:transthyretin fibrils was lower com-
pared to transthyretin aggregates formed in the lipid-
free environment [30]. We also showed that DMPC
and Cho decelerated the aggregation rate of Tau

© 2025 Federation of European Biochemical Societies.
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Fig. 11. Influence of lipids on the secondary structure of a-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and
histograms (B and D) showing the amount of parallel B-sheet, a-helix, random coil, and B-turn, as well as antiparallel B-sheet in the
secondary structure of A30P o-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in
red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,
(24.76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A-C is the average of three sample replicates
(n = 3). The graphical data are presented as the mean + SEM. According to one-way ANOVA followed by Tukey's HSD test, *P < 0.05,
**P < 0.01, **** < 0.0001. NS shows the absence of statistically significant differences.

isoforms with 0 (ON4R), 1 (IN4R) and 2 (2N4R) N
repeats [50,51]. However, for all isoforms except
2N4R, cytotoxicity of such protein-lipid aggregates
was higher than the cytotoxicity of ON4R and 1N4R
fibrils [51]. These results further support our conclu-
sion that protein-lipid interactions directly depend on
the amino acid sequence of amyloidogenic protein.

Conclusions

Our results showed that familial mutations in o-syn
uniquely alter protein—lipid interactions. In some cases
(A30P), mutations reduce protein-lipid interactions,
while in others (E46K, H50Q, and AS5S3T) proteins
respond differently to the same lipid. This response
includes but is not limited to the rate of protein aggre-
gation, morphology and secondary structure of amy-
loid fibrils. These results highlight a complex nature of

© 2025 Federation of European Biochemical Societies.

protein-lipid interactions that are taking place between
N terminus of a-syn, polar heads and aliphatic tails of
lipid FAs. These results also indicate that it is not only
electrostatic interactions that play a very important
role in protein-lipid interactions between charged
lysines in the N terminus and polar heads of lipids
[25], but also hydrophobic forces between non-polar
amino acids, such as alanine. We additionally found
that familial mutations uniquely attenuate cytotoxicity
of a-syn fibrils. A30P mutation results in the forma-
tion of equally cytotoxic fibrils under different concen-
trations of DMPC, SM and Cho, while other
mutations E46K, H50Q and AS53T make amyloid
fibrils more or less toxic with the particular lipid mix-
ture. These results indicate that changes in lipid pro-
files of cell membranes could have a strong effect on
the onset and progression of PD in individuals with
familial mutations.
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Fig. 12. Influence of lipids on the secondary structure of a-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and
histograms (B and D) showing the amount of parallel B-sheet, a-helix, random coil, and B-turn, as well as antiparallel B-sheet in the
secondary structure of E46K a-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in
red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,
(24:76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A-C is the average of three sample replicates
(n = 3). The graphical data are presented as the mean + SEM. According to one-way ANOVA followed by Tukey's HSD test, **P < 0.01,
*xkP < 0.001. NS shows the absence of statistically significant differences.

Materials and methods

Materials

(DMPC 14:0) 1,2-dimyristoyl-sn-glycero-3-phosphocholine,
cholesterol and sphingomyelin (Brain, Porcine) were pur-
chased from Avanti (Alabaster, AL, USA); IPTG was
purchased from SIGMA USA.

Cloning and site direct mutagenesis of the a-
synuclein, A30P, A53T, E46K and H50Q

plasmid pET-21a containing the o-synuclein (aSYN) gene
was used as a template for site-directed mutagenesis.
Primers were designed to introduce specific mutations at
positions A30P, A53T, E46K and H50Q. A30P: Forward:
AGCACCAGGAAAGACAAAAGAGG; Reversed: TTCC
TGGTGCTTCTGCCACACCC; A53T: Forward: TGTGA
CAACAGTGGCTGAGAAG; Reversed: GTTGTCACAC

16

CATGCACCACTC; E46K: Forward: CAAGAAGGGAG
TGGTGCATGGTG; Reversed: CTCCCTTCTTGGTTTT
GGAGCCT; HS50Q: Forward: GGTGCAAGGTGTGG
CAACAG; Reversed: CACCTTGCACCACTCCCTCC.
PCR reactions (50 uL) were performed using 50 ng of plas-
mid template, 2 mm of each primer, 200 um dNTPs, and
2 U of DNA fusion polymerase. The amplification prod-
ucts were analysed by 1% agarose gel electrophoresis, puri-
fied using the PureLink™ PCR Purification Kit (Thermo
Fisher Scientific, Waltham, MA, USA), and subsequently
treated with Dpnl (NEB) to degrade the template DNA.
Following digestion, 5 pL of the purified PCR product was
transformed into DHS5a competent E. coli cells and plated
on Luria—Bertani (LB) agar, containing 100 pg-mL~" ampi-
cillin. Ten colonies were selected, and their plasmids were
extracted using the Thermo Fisher Scientific miniprep Kkit.
Mutants were initially screened by Ndel and Xhol restric-
tion digestion, and successful mutants were confirmed by
Sanger sequencing (Eurofins).

© 2025 Federation of European Biochemical Societies.
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Fig. 13. Influence of lipids on the secondary structure of o-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and
histograms (B and D) showing the amount of parallel B-sheet, o-helix, random coil, and B-turn, as well as antiparallel p-sheet in the
secondary structure of H50Q a-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in
red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,
(24:76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A-C is the average of three sample replicates
(n = 3). The graphical data are presented as the mean + SEM. According to one-way ANOVA followed by Tukey's HSD test, *P < 0.05,

**%P < 0,001, **** < 0.0001. NS shows the absence of statistically si

Overexpression and initial purification of a-Syn
and o-Syn mutants (A30P, A53T, E46K,
and H50Q)

The pET2la-a-synuclein plasmid, along with its mutants
(A30P, AS53T, E46K, and H50Q), was overexpressed in
Escherichia coli BL21 (DE3) Rosetta cells using LB broth,
following the protocol described by Volles and Lansbury
[52]. A two-litre bacterial culture was induced with 1 mM
IPTG, grown to the desired density, and harvested by cen-
trifugation at 8000 RPM for 10 min. The resulting cell pel-
let was resuspended in a lysis buffer (50 mm Tris, 10 mm
EDTA, 150 mm NaCl, pH 7.5), supplemented with a prote-
ase inhibitor cocktail (Roche (Hoffmann-La Roche AG),
Basel, Switzerland). Lysis was performed by two freeze—
thaw cycles, followed by sonication. The lysate was then
heated in a water bath at 100 °C for 30 min to denature
unwanted proteins.

After heat treatment, the sample was centrifuged at
16 000 g for 30 min and the supernatant was collected. To
remove nucleic acids and contaminants, 10% streptomycin
sulfate (136 pL-mL™") and  glacial acetic  acid

© 2025 Federation of European Biochemical Societies.

gnificant differences.

(228 pL-mL™") were added, followed by centrifugation at
16 000 g for 10 min at 4 °C. The resulting supernatant was
subjected to protein precipitation by adding an equal vol-
ume of saturated ammonium sulfate at 4 °C. The precipi-
tate was washed with a 1:1 (v/v) mixture of saturated
ammonium sulfate and water at 4 °C, then resuspended in
100 mm ammonium acetate (NH4CH3;COO) under constant
stirring for 10 min. To further purify the protein, absolute
ethanol precipitation was performed twice at room temper-
ature. The collected protein pellet was resuspended in
100 mM ammonium acetate, lyophilised, and stored at —
20 °C for subsequent chromatographic purification.

Gel filtration chromatography of expressed
proteins

Proteins were dissolved in PBS buffer, pH 7.4 and centri-
fuged for 30 min at 14 000 g using a benchtop microcentri-
fuge (Eppendorf centrifuge 5424, USA). Next, 500 pL of
concentrated protein was loaded on a Superdex 200 10/300
gel filtration column in AKTA pure (GE Healthcare Tech-
nologies Inc., Chicago, IL, USA) FPLC. Proteins were eluted
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Fig. 14. Influence of lipids on the secondary structure of a-syn aggregates. AFM-IR spectra (A and C) and histograms (B and D) showing
the amount of parallel B-sheet, a-helix, random coil, and B-turn, as well as antiparallel B-sheet in the secondary structure of AS3T a-syn
aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol
(Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in red; DMPC in light green, (10:90 Cho:
DMPC) in green, (456:565 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow, (24:76 SM:DMPC) in pink, and
(40:60 SM:DMPC) in maroon. Each curve shown in panels A-C is the average of three sample replicates (n = 3). The graphical data are
presented as the mean + SEM. According to one-way ANOVA followed by Tukey's HSD test, ***P < 0.001. NS shows the absence of
statistically significant differences.

isocratically with a flow rate of 0.5 mL-min~"' at 4 °C using Protein aggregation

the same buffer and 1.5 mL fractions were collected accord-

ing to the UV-VIS detection at 280 nm. In a lipid-free environment, 100 pm of a-syn and a-syn

mutants (A30P, A53T, E46K and H50Q) were dissolved in

PBS (pH 7.4). For lipid-containing conditions, 100 pm of
Preparation of large unilamellar vesicles (LUVs) a-synuclein, A30P, AS53T, E46K and H50Q were mixed
with an equimolar concentration of DMPC, 10:90 Cho:
DMPC, 45:55 Cho:DMPC, 60:40 Cho:DMPC, 10:90 SM:
DMPC, 24:76 SM:DMPC or 40:60 SM:DMPC. The final
pH of the solutions was adjusted to 7.4 using concentrated
HCI. Next, samples were transferred into a 96-well plate
and incubated in a Tecan plate reader (Mannedorf, Swit-
zerland) at 37 °C for 160 h under 510 rpm agitation.

Vesicles composed of DMPC, 10:90 Cho:DMPC, 45:55
Cho:DMPC, 60:40 Cho:DMPC, 10:90 SM:DMPC, 24:76
SM:DMPC and 40:60 SM:DMPC were prepared following
the method described by Galvagnion et al. [11]. First, indi-
vidual lipids and their mixtures were dissolved in
phosphate-buffered saline (PBS, pH 7.4). The lipid suspen-
sions were then heated in a water bath at ~65 °C for
30 min to ensure proper hydration. Next, the samples were
rapidly frozen in liquid nitrogen for 1 min. This freeze— Thioflavin T (ThT) assay

thaw cycle was repeated 8-10 times to promote vesicle for- . . . . i
mation. Finally, the suspensions were extruded through a Protein aggregation rates were monitored using a Thiofla-

100 nm membrane using an Avanti extruder (Alabaster, Vil? T (ThT) fluorescence a.ssay. For  this, samples were
AL, USA) to obtain uniformly sized LUVs mixed with 2 mm ThT solution and transferred into a 96-

18 © 2025 Federation of European Biochemical Societies.
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Fig. 15. Influence of lipids on the cytotoxicity of a-syn aggregates. Histograms of lactate dehydrogenase assay of WT a-syn, A30P, E46K,
H50Q, and AB3T a-syn fibrils-grown presence of large unilamellar vesicles with different concentrations of 1,2-dimyristoyl-sn-glycero-3-
phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. All measurements were
made in triplicates. Means of three replicates are shown in the figures. At least two independent experiments were made for each set of
samples. One-way ANOVA with Tukey’s honestly significant difference post hoc was performed to reveal statistical significance between
samples relative to control (ctr) (black) and fibrils with no lipids (blue). The graphical data are presented as the mean + SEM. NS is a

nonsignificant difference; *P < 0.05, **P < 0.01, and ****P < 0.0001.

well plate. The plate was incubated in a Tecan plate reader
(Mannedorf, Switzerland) at 37 °C for 160 h under contin-
uous agitation at 510 rpm. Fluorescence readings were
recorded every 10 min with an excitation wavelength of
450 nm and an emission wavelength of 488 nm. Each
kinetic curve represents the average of three independent
experiments. To calculate the lag-phase (f,5) and half-time
(t12) of protein aggregation, time points at which the ThT
intensity was 10% and 50% of the maximal plateau values
were taken and reported in Figs 1-3. A dip in the plateau
phase in several cases is likely to be caused by precipitation
of the formed protein aggregates to the bottom of the

© 2025 Federation of European Biochemical Societies.

plastic well, which is common for plate-reader-based ThT
measurements [30,53]. It should be noted that in the
absence of the protein, LUVs themselves give no changes
in the ThT signal.

Atomic force microscopy and atomic force
microscopy-infrared spectroscopy (AFM-IR)

Microscopic analysis of o-syn and o-syn mutants aggre-
gates was performed using Nano-IR3 system (Bruker,
Santa Barbara, CA, USA). Samples were diluted 1:15 in
deionised (DI) water before deposition on gold-coated
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silicon wafer. For each sample, three 10 x 10 pm areas
were scanned, with 6-7 height measurements recorded from
each region before capturing the final image. Imaging and
spectral acquisition were performed using gold-coated
contact-mode AFM probes (ContGB-G, Nano-AndMore,
Watsonville, CA, USA). Each spectrum was collected three
times, averaged, and smoothed using a Savitzky—Golay fil-
ter (second order) in MATLAB. Spectral deconvolution of
the averaged spectra was performed in GRAMS/AI. Sec-
ondary structure assignments were based on characteristic
absorption bands: parallel B-sheet at 1624 cm™', o-helix
and random coil at 1655 cm™!, B-turn at 1682 cm™!, and
anti-parallel B-sheet at 1698 cm™".

Circular dichroism (CD) spectroscopy

After 150 h of aggregation, samples were diluted with PBS
and transferred into a quartz cuvette. CD spectra were
recorded immediately using a Jasco J-1000 CD spectrome-
ter (Jasco, Easton, MD, USA). For each sample, three
spectra were collected over the wavelength range of
190-240 nm and subsequently averaged to ensure accuracy.

Attenuated total reflectance Fourier-transform
infrared (ATR-FTIR) spectroscopy

Samples were first deposited onto the ATR crystal of a Per-
kinElmer 100 FTIR spectrometer (Waltham, MA, USA),
equipped with an ATR module. Samples were air-dried at
room temperature before spectral acquisition. For each
sample, three spectra were recorded and averaged to ensure
accuracy.

Cell toxicity assay on N27 rat dopaminergic
neurons

N27 cells (MilliporeSigma, Burlington, MA, USA; cat. no.
SCC048, RRID:CVCL_D584) were cultured in 96-well
plates with RPMI 1640 medium supplemented with 10%
fetal bovine serum (FBS) at 37 °C and 5% CO,. N27 cell
line is not listed as commonly misidentified by ICLAC. The
cells were not authenticated post-purchase and were used for
a maximum of 10 passages. All experiments were performed
with mycoplasma-free cells. Once the cells reached approxi-
mately 70% confluency after 24 h of incubation, they were
ready for experimentation. For the LDH assay, 100 pL of
the medium was replaced with fresh RPMI 1640 medium
containing 5% FBS, and 10 pL of the protein sample was
added. The reduction in FBS concentration was done to
minimise baseline absorbance in the samples. After an addi-
tional 24 h of incubation, the CytoTox 96® Non-
Radioactive Cytotoxicity Assay Kit (G1781, Promega, Madi-
son, WI, USA) was used to quantify the amount of lactate
dehydrogenase (LDH) released into the culture medium.
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