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Progressive aggregation of a-synuclein (a-Syn) in the midbrain, hypothala-

mus and thalamus is linked to Parkinson’s disease (PD), one of the fastest

growing neurodegenerative diseases in the U.S. Studies of families with PD

history revealed several mutations that are responsible for the early-onset

(A30P, E46K, A53T) and late-onset (H50Q) forms of PD. A growing body

of evidence indicates that phospho-/sphingolipids and cholesterol alter the

aggregation properties of wild-type (WT) a-syn. However, the effects of

these lipids on the rate of a-syn mutants remain unclear. In the current

study, we determined the aggregation rates of A30P, E46K, A53T, H50Q

and WT a-syn in the presence of large unilamellar vesicles composed of

phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol (Cho)—the

key lipids of neuronal membranes. We also utilised a set of biophysical

methods to reveal the extent to which lipids alter the morphology and sec-

ondary structure of amyloid fibrils. We found that familial mutations

uniquely altered a-syn interactions with lipid bilayers, which resulted in the

altered rate of protein aggregation in the presence of lipid bilayers. Fur-

thermore, A30P mutation fully disabled a-syn interaction with LUVs, while

E46K, A53T and H50Q mutations altered cytotoxicity of a-syn fibrils

formed in the presence of lipid bilayers. These results suggest that changes

in plasma membrane lipid profiles may have a strong effect on the onset

and progression of PD in individuals with familial mutations.

Introduction

Lewy bodies (LBs) are intraneuronal inclusions

observed in midbrain, hypothalamus and thalamus of

patients diagnosed by Parkinson’s disease (PD) [1–3].
This pathology affects over 90,000 people in the U.S.

alone with combined direct and indirect costs reaching

$52 billion per year [4]. Microscopic analysis of LBs

revealed the presence of lipid bilayers and a-synuclein
(a-syn) fibrils [5–8]. Numerous in vitro studies

demonstrated that lipid membranes could alter the rate

of a-syn aggregation, as well as change the

secondary structure of amyloid fibrils [9–15]. Specifi-

cally, Hannestad and co-workers found that a-syn not

only aggregated on the surfaces of lipid membranes,

but strongly perturbed membrane integrity [16]. The

Claessens group showed that a-syn–lipid interactions

could be altered by the charge and the size of lipid ves-

icles [17–23]. Importantly, lipid-induced changes in the

secondary structure of a-syn oligomers and fibrils
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uniquely alter their cytotoxicity [9,24]. These effects

are determined by the chemical structure of lipids, as

well as by the length and saturation of fatty acids

(FAs) in the lipids [11,25,26].

DNA sequencing of patients with a family history of

PD allowed for the identification of several mutations that

were linked to the early-onset (A30P, E46K, and A53T)

and late-onset (H50Q) forms of PD [27]. The Galvagnion

group found that anionic 1,2-dimyristoyl-sn-glycero-3-

phospho-L-serine (DMPS) accelerated the aggregation

rate of WT a-syn, as well as A30P, and A53T a-syn
mutants [12]. Our group showed that this effect could be

altered by the length and saturation of FAs in PS [28].

Specifically, C14:0 PS (DMPS) caused significantly stron-

ger acceleration of the WT a-syn compared to C18:0 (1,2-

distearyl-sn-glycero-3-phospho-L-serine, DSPS) and PS

with unsaturated FAs (1,2-dioleoyl-sn-glycero-3-

phospho-L-serine (DOPS) and 1-palmitoyl-2-oleoyl-sn-

glycero-3-phospho-L-serine (POPS) [28]. However, this

relationship was not observed for A30P and A53T a-syn
mutants. Furthermore, WT a-syn:DSPS fibrils exerted

much weaker cytotoxic effects on rat dopaminergic neu-

rons compared to WT a-syn. However, cytotoxicity of

A30P:DSPS and A53T:DSPS fibrils were similar to A30P

and A53T a-syn, respectively [28]. These results indicate

that familial mutations in a-syn change protein–lipid
interactions. Holman and co-workers recently reported

that WT a-syn formed in the presence of 1,2-dipalmitoyl-

sn-glycero-3- phosphocholine (DPPC), 1,2-dioleoyl-sn-

glycero3-phosphocholine (DOPC), 30-bis[1,2-

distearoylsn-glycero-3-phospho]-glycerol and 30-bis[1,2-

dilinoleoyl-sn-glycero-3-phospho]-glycerol, as well as mix-

tures of these phospholipids, exert significantly higher cell

toxicity compared to the protein aggregates formed in the

lipid-free environment [29]. Furthermore, diet supplemen-

tation of these lipids to C. elegans altered their lifespan

[29]. Recently, Matveyenka and co-workers found that

cholesterol strongly accelerated the rate of a-syn aggrega-

tion [24]. Specifically, an increase in the concentration of

cholesterol from 10% to 45% in large unilamellar vesicles

(LUVs), composed of dipalmitoyl-sn-glycero-3-

phosphatidylcholine (DPPC), increased the rate of WT

a-syn aggregation [24]. However, the effect of cholesterol

on the aggregation properties of a-syn mutants remains

unclear.

In this study, we investigate the relationship between

the cholesterol concentration and the rate of A30P,

E46K, A53T, H50Q and WT a-Syn aggregation. We

also determine the effect of sphingomyelin (SM) and

1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine

(DMPC) on the aggregation rate of these mutants.

Using atomic force microscopy (AFM) and

nano-Infrared spectroscopy, also known as atomic

force microscopy Infrared (AFM-IR) spectroscopy, we

examined the morphology and secondary structure of

A30P, E46K, A53T, H50Q and WT a-Syn fibrils

formed in the presence of LUVs composed of 10:90,

45:55, and 60:40 mol:mol ratios of cholesterol:DMPC

that represent low, physiological and elevated concen-

trations of cholesterol in plasma membranes of neu-

rons [30]. We also investigated the effect of LUVs

composed of 10:90, 24:66, and 40:60 mol:mol ratios of

SM:DMPC, which aim to model plasma membranes

with low, normal, and high concentrations of SM [30].

Finally, cell assays were used to investigate the rela-

tionship between the secondary structure of A30P,

E46K, A53T, H50Q and WT a-Syn fibrils and their

toxicity to rat dopaminergic cells.

Results

Kinetic studies of protein aggregation in the

presence of LUVs with different concentrations

of DMPC, Cho and SM, as well as in the lipid-fee

environment

In the lipid-free environment, WT a-syn aggregated

with a well-defined lag-phase (tlag = 12.48 � 1.14 h)

that was extended to (tlag = 29.25 � 3.334 h) in the

presence of 100% DMPC LUVs, Fig. 1. With an

increase in the concentration of Cho in the LUVs, tlag
gradually decreased from 22.61 � 0.44 h (10:90 Cho:

DMPC) to 12.81 � 0.78 h (60:40 Cho:DMPC). Based

on these results, we could conclude that Cho acceler-

ated, while DMPC decelerated WT a-syn aggregation.

Our results also indicate that LUVs, except 45:55 Cho:

DMPC, did not have a significant effect on the rate of

fibril formation (t1/2), Fig. 1. Thus, DMPC and Cho:

DMPC LUVs primarily interact with monomeric WT

a-syn, rather than being involved in fibril elongation

Fig. 1. Lipids alter the rate of WT and A30P a-syn aggregation. Kinetic studies of WT and A30P a-syn aggregation in the presence of LUVs

with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM).

Thioflavin T plots (A, C, E, G) with corresponding bar graphs (B, D, F, H) of tlag and t1/2. Each curve shown in panels A, C, E and G is the

average of three sample replicates (n = 3). The graphical data are presented as the mean � SEM. According to one-way ANOVA,

**P < 0.01; ***P < 0.001. NS, nonsignificant differences.
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and secondary nucleation. ThT assay also revealed

that, unlike Cho, SM did not have an effect on either

tlag or t1/2 of WT a-syn aggregation.

Interestingly, A30P mutant of a-syn fully disabled

protein–lipid interactions. This conclusion could be

made based on ThT analyses of A30P a-syn interac-

tion with DMPC, SM:DMPC, and Cho:DMPC LUVs.

We also found that DMPC LUVs delayed the lag-

phase of E46K a-syn (tlag = 26.74 � 0.85 h) that

aggregated much faster (tlag = 8.44 � 0.25 h) com-

pared to WT a-syn (tlag = 12.48 � 1.14 h), Fig. 2. Our

results also showed that 60:40 Cho:DMPC LUVs

accelerated (tlag = 9.61 � 0.21 h) the aggregation rate

of E46K a-syn much stronger than 10:90 Cho:DMPC

LUVs (tlag = 11.24 � 0.81 h). However, this effect was

not as pronounced for 45:55 Cho:DMPC

(tlag = 19.92 � 0.75 h). Thus, we can conclude that the

E46K mutation significantly altered a-syn–Cho inter-

actions. These conclusions are further supported by

the analyses of t1/2 of E46K a-syn aggregation. We

also found that LUVs that contained 10%

(tlag = 17.43 � 0.59 h), 24% (tlag = 12.75 � 0.71 h),

and 40% (tlag = 18.41 � 0.95 h) of SM significantly

delayed the lag-phase of E46K a-syn aggregation

(tlag = 8.44 � 0.25 h), Fig. 2. Based on these results,

we can conclude that E46K mutation in a-syn strongly

altered protein–SM interactions.

ThT kinetics revealed that DMPC and Cho had sim-

ilar effects on H50Q a-syn aggregation as for WT a-
syn. Specifically, DMPC LUVs delayed the lag-phase

of H50Q a-syn aggregation (tlag = 4.31 � 0.21 h),

while this effect was mitigated by the presence of Cho

in such LUVs. Specifically, 60:40 Cho:DMPC LUVs

had the strongest acceleration effect on the lag-phase

(tlag = 2.01 � 0.32 h) compared to 10:90 (tlag =
2.71 � 0.02 h) and 45:55 (tlag = 3.00 � 0.08 h) Cho:

DMPC LUVs, Fig. 2. The same effect of Cho was

observed on the rate (t1/2) of protein aggregation. We

found an increase in t1/2 with an increase in the con-

centration of Cho in LUVs exposed to H50Q a-syn.
We also found that H50Q a-syn exhibited similar

interactions with SM as E46K a-syn, Fig. 2. Specifi-

cally, a delay in tlag was observed in the presence of

LUVs with 10%, 24% and 40% of SM tlag =
4.41 � 0.05 h, tlag = 4.04 � 0.08hand tlag = 4.33 �
0.01 h, respectively. Similar delay was observed in t1/2

for 24:76 SM:DMPC and 40:60 SM:DMPC LUVs

t1/2 = 13.64 � 0.05 h, t1/2 = 12.84 � 0.08hand t1/2 =
12.83 � 0.01 h, respectively. These results indicate that

a H50Q mutation did not significantly alter protein–
Cho interaction. However, this mutation had a strong

impact on a-syn–SM interactions.

ThT assay showed that A53T a-syn (tlag =
9.31 � 0.24 h) aggregated slightly faster than WT

a-syn (tlag = 12.48 � 1.14 h), Fig. 3. Similar to WT a-
syn, DMPC LUVs delayed the lag-phase of A53T a-
syn aggregation (tlag = 12.35 � 0.21 h), while low

(tlag = 7.58 � 0.50 h) and medium (tlag = 7.684 �
0.32 h) concentrations of Cho in LUVs shortened the

lag-phase of A53T a-syn aggregation. However, high

concentrations of Cho, on the other hand, strongly

delayed the lag-phase (tlag = 12.81 � 0.81 h) of A53T

a-syn aggregation, Fig. 3. These results indicate that

A53T mutation altered protein–Cho interactions.

These conclusions are further supported by the kinetic

analysis of A53T a-syn aggregation in the presence of

SM LUVs. Specifically, we found that an increase in

the concentration of SM in LUVs resulted in the accel-

eration of A53T a-syn aggregation, which was not

observed for WT a-syn. Based on these results, we can

conclude that mutations in a-syn drastically alter

protein–lipid interactions, which results in the increase

or decrease of the lag-phase of the a-syn aggregation

and the rate of fibril formation.

Morphological characterisation of protein

aggregates formed in the presence of LUVs with

different concentrations of DMPC, Cho and SM,

as well as in the lipid-free environment

Microscopic analysis of amyloid samples revealed that in

the lipid-free environment, WT a-syn formed long fibrillar

species with heights ranging from 9 to 18 nm, Figs 4–6
and Table S1. Significantly shorter and thinner fibrils were

observed in WT a-syn:DMPC, as well as in WT a-syn:
(10:90 SM:DMPC) and WT a-syn:(24:76 SM:DMPC).

However, in the presence of 60:40 SM:DMPC, WT a-syn
developed long fibrillar structures that were not observed

at low concentrations of SM in LUVs, Figs 4–6 and

Table S1. Thus, we can conclude that DMPC and high

concentrations of SM substantially alter the morphology

of WT a-syn fibrils. We also found that the presence of

Fig. 2. Lipids alter the rate of E46K and H50Q a-syn aggregation. Kinetic studies of E46K and H50Q a-syn aggregation in the presence of

LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM).

Thioflavin T plots (A, C, E, G) with corresponding bar graphs (B, D, F, H) of tlag and t1/2. Each curve shown in panels A, C, E, G is the

average of three sample replicates (n = 3). The graphical data are presented as the mean � SEM. According to one-way ANOVA,

*P < 0.05; **P < 0.01; ****P < 0.001; ****P < 0.0001. NS, nonsignificant differences.
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Cho in DMPC LUVs did not substantially alter the mor-

phology of WT a-syn aggregates. Specifically, in all sam-

ples, we observed fibrillar structures with similar heights

(6–18 nm) to those formed in the lipid-free environment,

Figs 4–6 and Table S1. These results are in good agree-

ment with experimental findings that were previously

reported by our group for DPPC:Cho LUVs [24]. Thus,

we can conclude that Cho does not significantly change

the morphology of WT a-syn aggregates.

No substantial morphological changes were also evi-

dent in A30P a-syn:lipid samples compared to the

fibrils observed in A30P a-syn. Specifically, in all sam-

ples formed by A30P a-syn, morphologically similar

fibrils with 6–18 nm in height were observed. Our

results show that in the lipid-free environment, E46K

a-syn formed only short fibrillar species with 6–12 nm

in height, Figs 4–6 and Table S1. Morphologically

similar species, however, with larger lengths, were

observed in E46K a-syn:DMPC and E46K a-syn:
(Cho:DMPC) samples, Figs 4–6. These results indicate

that both DMPC and Cho did not significantly alter

the morphology of E46K a-syn fibrils. At the same

time, the presence of SM in LUVs resulted in the for-

mation of thick and long protein aggregates. Based on

these results, we could conclude that SM drastically

altered the morphology of E46K a-syn fibrils.

In the lipid-free environment, H50Q a-syn aggre-

gated, forming long fibrils with 6–18 nm in height.

Morphologically similar fibrils were observed in H50Q

a-syn:DMPC, H50Q a-syn:(Cho:DMPC), and H50Q

a-syn:(SM:DMPC) samples, Figs 4–6 and Table S1.

These results indicate that neither DMPC, Cho or SM

substantially alter the morphology of H50Q a-syn
aggregates. The same conclusions could be made about

A53T a-syn aggregates. In the absence of LUVs, A53T

a-syn formed long fibrils that were 6–15 nm in height,
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A53T α-Syn:DMPC
A53T α-Syn:(10:90 Cho:DMPC)
A53T α-Syn:(45:55 Cho:DMPC)
A53T α-Syn:(60:40 Cho:DMPC)

ytisnetnI
ecnecseroulF

(A)

0

20

40

60

80

100

120

0 50 100 150
Time, h

0

5

10

15

20

25

30

35

Ti
m

e,
 h

(B)

tlag t1/2

**** ****

** **

*

NS
NS

****

Time, h
0

5

10

15

20

25

NS
*

***

NSNS

tlag t1/2

*

Ti
m

e,
 h

(D)

0

20

40

60

80

100

120

0 50 100 150

ytisnetnI
ecnecseroulF

(C)

A53T α-Syn
A53T α-Syn:(10:90 SM:DMPC)
A53T α-Syn:(24:76 SM:DMPC)
A53T α-Syn:(40:60 SM:DMPC)

Fig. 3. Lipids alter the rate of A63T a-syn aggregation. Kinetic studies of A53T a-syn aggregation in the presence of LUVs with different

concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM). Thioflavin T plots (A

and C) with corresponding bar graphs (B and D) of tlag and t1/2. Each curve shown in panels A, C, E and G is the average of three sample

replicates (n = 3). The graphical data are presented as the mean � SEM. According to one-way ANOVA, *P < 0.05; **P < 0.01;

***P < 0.001; ****P < 0.0001. NS, nonsignificant differences.
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Figs 4–6 and Table S1. Morphologically similar fibrils

were found in A53T a-syn:DMPC, A53T a-syn:(Cho:
DMPC), and A53T a-syn:(SM:DMPC) samples. Thus,

these findings indicated that the presence of LUVs

with DMPC, SM and Cho had no effect on the mor-

phology of A53T a-syn fibrils.

Finally, AFM revealed the presence of LUVs (H50Q

a-syn:(SM:DMPC), A53T a-syn:(SM:DMPC), and

A30P a-syn:DMPC) and lipid droplets (A30P a-syn:
(10:90 SM:DMPC) and A30P a-syn:(45:55 SM:

DMPC)) in some of the analysed samples. Although

intact LUVs were typically observed by themselves,

lipid droplets were surrounded by fibrils, which further

supports our own results and experimental findings

reported by other groups that lipids facilitated the

aggregation of a-syn [11–13,29].

Fig. 4. Lipids alter the morphology a-syn aggregates. Atomic force microscopy images of WT, A30P, E46K, H50Q and A53T a-syn

aggregates formed in the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and

cholesterol (Cho), as well as in the lipid-free environment. Scale bars are 500 nm. Spherical aggregates are oligomers; prolonged rope-like

aggregates are fibrils. Height values of Z axes are summarised in Table S1.
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WT α-Syn:(10:90 
SM:DMPC)

WT α-Syn:(24:76 
SM:DMPC)

WT α-Syn:(40:60 
SM:DMPC)

A30P α-Syn:(10:90 
SM:DMPC)

A30P α-Syn:(24:76 
SM:DMPC)

A30P α-Syn:(40:60 
SM:DMPC)

E46K α-Syn:(10:90 
SM:DMPC)

E46K α-Syn:(24:76 
SM:DMPC)

E46K α-Syn:(40:60 
SM:DMPC)

H50Q α-
Syn:(10:90 
SM:DMPC)

H50Q α-Syn:(24:76 
SM:DMPC)

H50Q α-
Syn:(40:60 
SM:DMPC)

A53T α-
Syn:(10:90 
SM:DMPC)

A53T α-
Syn:(24:76 
SM:DMPC)

A53T α-
Syn:(40:60 
SM:DMPC)

Fig. 5. Lipids alter the morphology of a-syn aggregates. Atomic force microscopy images of WT, A30P, E46K, H50Q and A53T a-syn

aggregates formed in the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and

sphingomyelin (SM). Scale bars are 500 nm. Spherical aggregates are oligomers; prolonged rope-like aggregates are fibrils. Height values of

Z axes are summarised in Table S1.
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Structural characterisation of protein aggregates

formed in the presence of LUVs with different

concentrations of DMPC, Cho and SM, as well as

in the lipid-free environment

We used CD and FTIR to perform spectroscopic anal-

ysis of protein samples after 150 h of aggregation at

37 °C and 510 rpm agitation. CD spectra acquired

from all samples had a minimum around 220 nm, indi-

cating the presence of b-sheet, Figs 7–9. The same con-

clusion could be drawn by the analysis of amide I

band in the acquired FTIR spectra. In all collected

spectra, amide I band was centred around 1630–-
1636 cm�1, which indicates the predominance of paral-

lel b-sheet, Figs 7–9. We hypothesised that small

variability in the peak position of amide I band could

be caused by the presence of unaggregated protein in

all samples. To overcome this issue, we utilised nano-

IR spectroscopy that allows for positioning the scan-

ning probe directly at the aggregate of interest present

in the sample and to acquire IR spectra [31–35].
AFM-IR revealed that WT a-syn fibrils grown in

the lipid-free environment had a nearly equal (~30%)

amount of parallel, anti-parallel b-sheet, and a random

coil secondary structure. We also found that the pres-

ence of DMPC drastically lowered the amount of par-

allel b-sheet in WT a-syn fibrils, Fig. 10. However, the

presence of Cho in the LUVs did not result in struc-

tural differences in WT a-syn fibrils formed under the

experimental conditions described above. We also

found that the presence of LUVs with 10:90 SM:

DMPC ratio resulted in the formation of fibrils with a

highly rich parallel b-sheet. At the same time, WT a-
syn fibrils formed in the presence of LUVs with 24:76

SM:DMPC and 60:40 SM:DMPC had the same sec-

ondary structure as WT a-syn fibrils grown in the

lipid-free environment, Fig. 10.

We also found that a high concentration of Cho

and SM in LUVs resulted in an increase in the amount

of parallel b-sheet in A30P a-syn fibrils, Fig. 11. How-

ever, the presence of other LUVs did not alter the sec-

ondary structure of A30P a-syn fibrils. The same

conclusion could be made about E46K a-syn aggre-

gates. We observed an increase in the amount of paral-

lel b-sheet only in the protein aggregates that were

grown in the presence of 60:40 Cho:DMPC LUVs,

Fig. 12.

In H50Q, a-syn fibrils formed in the presence of

DMPC, and we observed a decrease in the amount

of parallel b-sheet. The same decrease was observed in

the presence of 45:55 Cho:DMPC and 60:40 Cho:

DMPC LUVs, as well as in the presence of all SM

LUVs, Fig. 13. These results indicate that the

secondary structure of H50Q a-syn fibrils is strongly

affected by Cho and SM. Finally, we found that A53T

a-syn fibrils formed in the presence of DMPC and

Cho:DMPC LUVs had the same secondary structure

as A53T a-syn fibrils formed in the lipid-free environ-

ment, Fig. 14. Only protein aggregates that were

grown in the presence of 24:76 SM:DMPC had a sig-

nificantly lower amount of parallel b-sheet.
Based on these results, we can conclude that

DMPC, SM and Cho caused substantial changes in

the secondary structure of WT, A30P, E46K, H50Q,

and A53T a-syn fibrils at some concentrations. This

concentration effect was directly dependent on the type

of lipid and mutation in a-syn. Additional studies are

required to fully understand the relationship between

the chemical structure of lipids, its concentration and

the effect exerted on each particular a-syn mutant.

Cytotoxicity of protein aggregates formed in the

presence of LUVs with different concentrations

of DMPC, Cho and SM, as well as in the lipid-free

environment

To examine cytotoxicity of a-syn fibrils formed in the

presence of LUVs with different concentrations of

DMPC, Cho and SM, as well as in the lipid-free envi-

ronment, rat dopaminergic neurons were used. Using

LDH assay, we investigated viability of these cells

after 24 h exposure to the fibrils. Our results indicated

that WT a-syn fibrils exerted significant toxicity to rat

dopaminergic neurons, Fig. 15. We found that the

presence of 45:55 Cho:DMPC and 60:30 Cho:DMPC

LUVs resulted in the formation of more toxic fibrils

compared to WT a-syn aggregates formed in the lipid-

free environment. These results are in good agreement

with our previous findings [36]. At the same time, the

presence of LUVs with SM did not alter the cytotoxic-

ity of WT a-syn fibrils.

Interestingly, LUVs did not alter the cytotoxicity of

A30P a-syn fibrils. At the same time, E46K a-Syn
fibrils formed in the presence of 60:40 Cho:DMPC

were found to be significantly more toxic, while those

formed in the presence of 10:90 SM:DMPC LUVs

were less toxic to the neurons, Fig. 15. LDH assay

also revealed that H50Q and A53T a-syn fibrils

formed in the presence of LUVs composed of DMPC,

SM and Cho were less toxic compared to H50Q and

A53T a-syn fibrils formed in the lipid-free environ-

ment, respectively. Thus, we can conclude that for all

mutants, except A30P, a-syn—as well as for WT

a-syn—DMPC, Cho and SM alter cytotoxicity of

amyloid fibrils.
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Fig. 6. Lipids alter the morphology of a-syn aggregates. Height histograms of WT, A30P, E46K, H50Q and A53T a-syn aggregates formed in

the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and

sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in red; DMPC in light green, (10:90 Cho:DMPC) in

green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow, (24:76 SM:DMPC) in pink, and (40:60 SM:

DMPC) in maroon. For each height profile, 10–20 individual aggregates were analysed.
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Fig. 7. Influence of lipids on the secondary structure of a-syn aggregates. CD (A, C, E, G) and normalised FTIR (B, D, F, H) spectra acquired

from WT and A30P a-syn aggregation in the presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-

phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM). Amide I and II bands originate from the vibration of amide bonds in

proteins. FTIR spectra are normalised on amide I band. For each spectrum, three individual measurements were made.
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Discussion

The onset and progression of PD are linked to the

abrupt aggregation of a-syn in the midbrain, thalamus

and hypothalamus. This small cytosolic protein is

mainly located in synaptic terminals [37]. Although

the physiologic function of a-syn is not fully
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Fig. 8. Influence of lipids on the secondary structure of a-syn aggregates. Circular dichroism (A, C, E, G) and normalised Fourier-

transformed Infrared (FTIR) (B, D, F, H) spectra acquired from E46K and H50Q a-syn aggregation in the presence of LUVs with different

concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM). Amide I and II bands

originate from the vibration of amide bonds in proteins. FTIR spectra are normalised on amide I band. For each spectrum, three individual

measurements were made.
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understood [38–40], there is a growing body of evi-

dence indicating the important role of a-syn in control

of the neurotransmitter release in synaptic clefts, syn-

aptic plasticity, and inflammatory response [10,41].

Intrinsically disordered, a-syn folds into an a-helical
structure in the presence of lipid membranes [12,42].

This and other evidence indicates the importance of

lipid bilayers for protein stability. Consequently,

changes in the composition of lipid membranes could

trigger protein aggregation. NMR and fluorescence

spectroscopy demonstrated that in such cases, a-syn
binds lipids via strong electrostatic interactions that

take place between lysine and glutamic acid residues

on the N-terminus (1–60 aa) of a-Syn and lipid head-

groups [43]. a-Syn–lipid complexes are also stabilised

by hydrophobic interactions that are established

between fatty acids of lipids and the central domain

(61–95 aa) of a-Syn [44,45]. Furthermore, such a-syn–
lipid complexes irreversibly change the catalytic reac-

tivity of cytoplasmic enzymes and lysosomal lipases,

which results in PD-specific alterations of lipids in

both the brain and plasma [46].

In our previous study, we examined the effect of PS

with different length and saturation of FAs on the

aggregation properties of WT a-syn, as well as on

A30P and A53T a-syn mutants [28]. Our results

showed that A30P and A53T mutations significantly

altered the response of a-syn to PS LUVs compared to

WT protein. We observed significant differences in the

rate of protein aggregation, secondary structure of

A30P a-syn:PS and a-syn:A53T fibrils, as well as the

cytotoxicity that such protein aggregates exerted on

rat dopaminergic neurons. However, it was unclear

whether such effects are unique to PS or if they are

common among a large group of lipids.

In the current study, we found that change in the

aggregation properties of E46K, A53T, H50Q, and

WT a-syn induced by DMPC, SM and Cho change

are concentration-dependent. Similar concentration-

dependent changes were observed in the toxicity that such

protein aggregates exert on rat dopaminergic cells. We

also found that A30P mutation has reduced membrane

affinity a-syn–lipid interactions. As a result, no changes in

the aggregation rate of A30P a-Syn were observed at dif-

ferent concentrations of DMPC, Cho and SM. This con-

clusion is further supported by lipid-independent

cytotoxicity of A30P a-syn fibrils that were not observed

for other mutants and WT a-syn. It is important to note

that our results are in good agreement with those reported

by other researcher groups [47–49].
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Fig. 9. Influence of lipids on the secondary structure of a-syn aggregates. Circular dichroism (A and C) and normalised Fourier-transformed

Infrared (FTIR) (B and D) spectra acquired from A53T a-syn aggregation in the presence of LUVs with different concentrations of 1,2-

dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM). Amide I and II bands originate from the

vibration of amide bonds in proteins. FTIR spectra are normalised on amide I band. For each spectrum, three individual measurements were

made.
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In our previous study, we used cite-specific mutagen-

esis to identify charged lysines present in the N termi-

nus of a-syn that determine protein–lipid interactions

[25]. That work showed that there is more than one

lysine that is responsible for such interactions, as well

as revealing possible contributions of hydrophobic

forces in the interactions between a-syn and lipids.

The observed effect of A30P mutation in the N termi-

nus of a-syn on DMPC, SM and Cho observed in the

current study supported our hypothesis that not only

electrostatic but also hydrophobic forces play a very

important role in the interactions between a-syn and

lipids. We additionally found that DMPC and the

larger analogue of this peptide, dipalmitoylphosphati-

dylcholine (DPPC, C16:0) exerted similar effects on a-
syn aggregation. Specifically, in our previous study, we

showed that a-syn:DPPC fibrils had lower cytotoxicity

compared to a-syn fibrils formed in the lipid-free envi-

ronment [24]. Our current findings indicate that a-syn:

DMPC fibrils also had lower cytotoxicity compared to

a-syn fibrils formed in the absence of lipids. These

results indicate that the length of FAs in the PC plays

a less important role in a-syn–lipid interactions com-

pared to the amino acid sequence of the protein N

terminus.

It should be noted that the effect of DMPC, SM

and Cho on the protein aggregation and cytotoxicity

of amyloid aggregates directly depends on protein

amino acid composition. In our previous study, we

demonstrated that Cho accelerated the aggregation of

transthyretin [30]. Furthermore, this effect directly

depended on the concentration of Cho in LUVs. At

the same time, SM and DMPC decelerated transthyre-

tin aggregation. However, cytotoxicity of such Cho,

SM and DMPC:transthyretin fibrils was lower com-

pared to transthyretin aggregates formed in the lipid-

free environment [30]. We also showed that DMPC

and Cho decelerated the aggregation rate of Tau
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Fig. 10. Influence of lipids on the secondary structure of a-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and

histograms (B and D) showing the amount of parallel b-sheet, a-helix, random coil, and b-turn, as well as antiparallel b-sheet in the

secondary structure of WT a-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-

phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in

red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,

(24:76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A–C is the average of three sample replicates

(n = 3). The graphical data are presented as the mean � SEM. According to one-way ANOVA followed by Tukey’s HSD test **P < 0.01,

****P < 0.0001. NS shows the absence of statistically significant differences.
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isoforms with 0 (0N4R), 1 (1N4R) and 2 (2N4R) N

repeats [50,51]. However, for all isoforms except

2N4R, cytotoxicity of such protein-lipid aggregates

was higher than the cytotoxicity of 0N4R and 1N4R

fibrils [51]. These results further support our conclu-

sion that protein–lipid interactions directly depend on

the amino acid sequence of amyloidogenic protein.

Conclusions

Our results showed that familial mutations in a-syn
uniquely alter protein–lipid interactions. In some cases

(A30P), mutations reduce protein–lipid interactions,

while in others (E46K, H50Q, and A53T) proteins

respond differently to the same lipid. This response

includes but is not limited to the rate of protein aggre-

gation, morphology and secondary structure of amy-

loid fibrils. These results highlight a complex nature of

protein–lipid interactions that are taking place between

N terminus of a-syn, polar heads and aliphatic tails of

lipid FAs. These results also indicate that it is not only

electrostatic interactions that play a very important

role in protein–lipid interactions between charged

lysines in the N terminus and polar heads of lipids

[25], but also hydrophobic forces between non-polar

amino acids, such as alanine. We additionally found

that familial mutations uniquely attenuate cytotoxicity

of a-syn fibrils. A30P mutation results in the forma-

tion of equally cytotoxic fibrils under different concen-

trations of DMPC, SM and Cho, while other

mutations E46K, H50Q and A53T make amyloid

fibrils more or less toxic with the particular lipid mix-

ture. These results indicate that changes in lipid pro-

files of cell membranes could have a strong effect on

the onset and progression of PD in individuals with

familial mutations.
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Fig. 11. Influence of lipids on the secondary structure of a-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and

histograms (B and D) showing the amount of parallel b-sheet, a-helix, random coil, and b-turn, as well as antiparallel b-sheet in the

secondary structure of A30P a-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-

phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in

red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,

(24:76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A–C is the average of three sample replicates

(n = 3). The graphical data are presented as the mean � SEM. According to one-way ANOVA followed by Tukey’s HSD test, *P < 0.05,

**P < 0.01, **** < 0.0001. NS shows the absence of statistically significant differences.
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Materials and methods

Materials

(DMPC 14:0) 1,2-dimyristoyl-sn-glycero-3-phosphocholine,

cholesterol and sphingomyelin (Brain, Porcine) were pur-

chased from Avanti (Alabaster, AL, USA); IPTG was

purchased from SIGMA USA.

Cloning and site direct mutagenesis of the a-
synuclein, A30P, A53T, E46K and H50Q

plasmid pET-21a containing the a-synuclein (aSYN) gene

was used as a template for site-directed mutagenesis.

Primers were designed to introduce specific mutations at

positions A30P, A53T, E46K and H50Q. A30P: Forward:

AGCACCAGGAAAGACAAAAGAGG; Reversed: TTCC

TGGTGCTTCTGCCACACCC; A53T: Forward: TGTGA

CAACAGTGGCTGAGAAG; Reversed: GTTGTCACAC

CATGCACCACTC; E46K: Forward: CAAGAAGGGAG

TGGTGCATGGTG; Reversed: CTCCCTTCTTGGTTTT

GGAGCCT; H50Q: Forward: GGTGCAAGGTGTGG

CAACAG; Reversed: CACCTTGCACCACTCCCTCC.

PCR reactions (50 lL) were performed using 50 ng of plas-

mid template, 2 mM of each primer, 200 lM dNTPs, and

2 U of DNA fusion polymerase. The amplification prod-

ucts were analysed by 1% agarose gel electrophoresis, puri-

fied using the PureLinkTM PCR Purification Kit (Thermo

Fisher Scientific, Waltham, MA, USA), and subsequently

treated with DpnI (NEB) to degrade the template DNA.

Following digestion, 5 lL of the purified PCR product was

transformed into DH5a competent E. coli cells and plated

on Luria–Bertani (LB) agar, containing 100 lg�mL�1 ampi-

cillin. Ten colonies were selected, and their plasmids were

extracted using the Thermo Fisher Scientific miniprep kit.

Mutants were initially screened by NdeI and XhoI restric-

tion digestion, and successful mutants were confirmed by

Sanger sequencing (Eurofins).
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Fig. 12. Influence of lipids on the secondary structure of a-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and

histograms (B and D) showing the amount of parallel b-sheet, a-helix, random coil, and b-turn, as well as antiparallel b-sheet in the

secondary structure of E46K a-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-

phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in

red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,

(24:76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A–C is the average of three sample replicates

(n = 3). The graphical data are presented as the mean � SEM. According to one-way ANOVA followed by Tukey’s HSD test, **P < 0.01,

***P < 0.001. NS shows the absence of statistically significant differences.
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Overexpression and initial purification of a-Syn
and a-Syn mutants (A30P, A53T, E46K,

and H50Q)

The pET21a-a-synuclein plasmid, along with its mutants

(A30P, A53T, E46K, and H50Q), was overexpressed in

Escherichia coli BL21 (DE3) Rosetta cells using LB broth,

following the protocol described by Volles and Lansbury

[52]. A two-litre bacterial culture was induced with 1 mM

IPTG, grown to the desired density, and harvested by cen-

trifugation at 8000 RPM for 10 min. The resulting cell pel-

let was resuspended in a lysis buffer (50 mM Tris, 10 mM

EDTA, 150 mM NaCl, pH 7.5), supplemented with a prote-

ase inhibitor cocktail (Roche (Hoffmann-La Roche AG),

Basel, Switzerland). Lysis was performed by two freeze–
thaw cycles, followed by sonication. The lysate was then

heated in a water bath at 100 °C for 30 min to denature

unwanted proteins.

After heat treatment, the sample was centrifuged at

16 000 g for 30 min and the supernatant was collected. To

remove nucleic acids and contaminants, 10% streptomycin

sulfate (136 lL�mL�1) and glacial acetic acid

(228 lL�mL�1) were added, followed by centrifugation at

16 000 g for 10 min at 4 °C. The resulting supernatant was

subjected to protein precipitation by adding an equal vol-

ume of saturated ammonium sulfate at 4 °C. The precipi-

tate was washed with a 1:1 (v/v) mixture of saturated

ammonium sulfate and water at 4 °C, then resuspended in

100 mM ammonium acetate (NH4CH3COO) under constant

stirring for 10 min. To further purify the protein, absolute

ethanol precipitation was performed twice at room temper-

ature. The collected protein pellet was resuspended in

100 mM ammonium acetate, lyophilised, and stored at –
20 °C for subsequent chromatographic purification.

Gel filtration chromatography of expressed

proteins

Proteins were dissolved in PBS buffer, pH 7.4 and centri-

fuged for 30 min at 14 000 g using a benchtop microcentri-

fuge (Eppendorf centrifuge 5424, USA). Next, 500 lL of

concentrated protein was loaded on a Superdex 200 10/300

gel filtration column in AKTA pure (GE Healthcare Tech-

nologies Inc., Chicago, IL, USA) FPLC. Proteins were eluted
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Fig. 13. Influence of lipids on the secondary structure of a-syn aggregates. Atomic force microscopy Infrared spectra (A and C) and

histograms (B and D) showing the amount of parallel b-sheet, a-helix, random coil, and b-turn, as well as antiparallel b-sheet in the

secondary structure of H50Q a-syn aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-

phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in

red; DMPC in light green, (10:90 Cho:DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow,

(24:76 SM:DMPC) in pink, and (40:60 SM:DMPC) in maroon. Each curve shown in panels A–C is the average of three sample replicates

(n = 3). The graphical data are presented as the mean � SEM. According to one-way ANOVA followed by Tukey’s HSD test, *P < 0.05,

***P < 0.001, **** < 0.0001. NS shows the absence of statistically significant differences.
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isocratically with a flow rate of 0.5 mL�min�1 at 4 °C using

the same buffer and 1.5 mL fractions were collected accord-

ing to the UV–VIS detection at 280 nm.

Preparation of large unilamellar vesicles (LUVs)

Vesicles composed of DMPC, 10:90 Cho:DMPC, 45:55

Cho:DMPC, 60:40 Cho:DMPC, 10:90 SM:DMPC, 24:76

SM:DMPC and 40:60 SM:DMPC were prepared following

the method described by Galvagnion et al. [11]. First, indi-

vidual lipids and their mixtures were dissolved in

phosphate-buffered saline (PBS, pH 7.4). The lipid suspen-

sions were then heated in a water bath at ~65 °C for

30 min to ensure proper hydration. Next, the samples were

rapidly frozen in liquid nitrogen for 1 min. This freeze–
thaw cycle was repeated 8–10 times to promote vesicle for-

mation. Finally, the suspensions were extruded through a

100 nm membrane using an Avanti extruder (Alabaster,

AL, USA) to obtain uniformly sized LUVs.

Protein aggregation

In a lipid-free environment, 100 lM of a-syn and a-syn
mutants (A30P, A53T, E46K and H50Q) were dissolved in

PBS (pH 7.4). For lipid-containing conditions, 100 lM of

a-synuclein, A30P, A53T, E46K and H50Q were mixed

with an equimolar concentration of DMPC, 10:90 Cho:

DMPC, 45:55 Cho:DMPC, 60:40 Cho:DMPC, 10:90 SM:

DMPC, 24:76 SM:DMPC or 40:60 SM:DMPC. The final

pH of the solutions was adjusted to 7.4 using concentrated

HCl. Next, samples were transferred into a 96-well plate

and incubated in a Tecan plate reader (M€annedorf, Swit-

zerland) at 37 °C for 160 h under 510 rpm agitation.

Thioflavin T (ThT) assay

Protein aggregation rates were monitored using a Thiofla-

vin T (ThT) fluorescence assay. For this, samples were

mixed with 2 mM ThT solution and transferred into a 96-
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Fig. 14. Influence of lipids on the secondary structure of a-syn aggregates. AFM-IR spectra (A and C) and histograms (B and D) showing

the amount of parallel b-sheet, a-helix, random coil, and b-turn, as well as antiparallel b-sheet in the secondary structure of A53T a-syn

aggregates-grown presence of LUVs with different concentrations of 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC), cholesterol

(Cho) and sphingomyelin (SM), as well as in the lipid-free environment. Lipid-free conditions are in red; DMPC in light green, (10:90 Cho:

DMPC) in green, (45:55 Cho:DMPC) in blue, (60:40 Cho:DMPC) in purple, (10:90 SM:DMPC) in yellow, (24:76 SM:DMPC) in pink, and

(40:60 SM:DMPC) in maroon. Each curve shown in panels A–C is the average of three sample replicates (n = 3). The graphical data are

presented as the mean � SEM. According to one-way ANOVA followed by Tukey’s HSD test, ***P < 0.001. NS shows the absence of

statistically significant differences.
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well plate. The plate was incubated in a Tecan plate reader

(M€annedorf, Switzerland) at 37 °C for 160 h under contin-

uous agitation at 510 rpm. Fluorescence readings were

recorded every 10 min with an excitation wavelength of

450 nm and an emission wavelength of 488 nm. Each

kinetic curve represents the average of three independent

experiments. To calculate the lag-phase (tlag) and half-time

(t1/2) of protein aggregation, time points at which the ThT

intensity was 10% and 50% of the maximal plateau values

were taken and reported in Figs 1–3. A dip in the plateau

phase in several cases is likely to be caused by precipitation

of the formed protein aggregates to the bottom of the

plastic well, which is common for plate-reader-based ThT

measurements [30,53]. It should be noted that in the

absence of the protein, LUVs themselves give no changes

in the ThT signal.

Atomic force microscopy and atomic force

microscopy-infrared spectroscopy (AFM-IR)

Microscopic analysis of a-syn and a-syn mutants aggre-

gates was performed using Nano-IR3 system (Bruker,

Santa Barbara, CA, USA). Samples were diluted 1:15 in

deionised (DI) water before deposition on gold-coated
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Fig. 15. Influence of lipids on the cytotoxicity of a-syn aggregates. Histograms of lactate dehydrogenase assay of WT a-syn, A30P, E46K,

H50Q, and A53T a-syn fibrils-grown presence of large unilamellar vesicles with different concentrations of 1,2-dimyristoyl-sn-glycero-3-

phosphatidylcholine (DMPC), cholesterol (Cho) and sphingomyelin (SM), as well as in the lipid-free environment. All measurements were

made in triplicates. Means of three replicates are shown in the figures. At least two independent experiments were made for each set of

samples. One-way ANOVA with Tukey’s honestly significant difference post hoc was performed to reveal statistical significance between

samples relative to control (ctr) (black) and fibrils with no lipids (blue). The graphical data are presented as the mean � SEM. NS is a

nonsignificant difference; *P ≤ 0.05, **P ≤ 0.01, and ****P ≤ 0.0001.
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silicon wafer. For each sample, three 10 9 10 lm areas

were scanned, with 6–7 height measurements recorded from

each region before capturing the final image. Imaging and

spectral acquisition were performed using gold-coated

contact-mode AFM probes (ContGB-G, Nano-AndMore,

Watsonville, CA, USA). Each spectrum was collected three

times, averaged, and smoothed using a Savitzky–Golay fil-

ter (second order) in MATLAB. Spectral deconvolution of

the averaged spectra was performed in GRAMS/AI. Sec-

ondary structure assignments were based on characteristic

absorption bands: parallel b-sheet at 1624 cm�1, a-helix
and random coil at 1655 cm�1, b-turn at 1682 cm�1, and

anti-parallel b-sheet at 1698 cm�1.

Circular dichroism (CD) spectroscopy

After 150 h of aggregation, samples were diluted with PBS

and transferred into a quartz cuvette. CD spectra were

recorded immediately using a Jasco J-1000 CD spectrome-

ter (Jasco, Easton, MD, USA). For each sample, three

spectra were collected over the wavelength range of

190–240 nm and subsequently averaged to ensure accuracy.

Attenuated total reflectance Fourier-transform

infrared (ATR-FTIR) spectroscopy

Samples were first deposited onto the ATR crystal of a Per-

kinElmer 100 FTIR spectrometer (Waltham, MA, USA),

equipped with an ATR module. Samples were air-dried at

room temperature before spectral acquisition. For each

sample, three spectra were recorded and averaged to ensure

accuracy.

Cell toxicity assay on N27 rat dopaminergic

neurons

N27 cells (MilliporeSigma, Burlington, MA, USA; cat. no.

SCC048, RRID:CVCL_D584) were cultured in 96-well

plates with RPMI 1640 medium supplemented with 10%

fetal bovine serum (FBS) at 37 °C and 5% CO2. N27 cell

line is not listed as commonly misidentified by ICLAC. The

cells were not authenticated post-purchase and were used for

a maximum of 10 passages. All experiments were performed

with mycoplasma-free cells. Once the cells reached approxi-

mately 70% confluency after 24 h of incubation, they were

ready for experimentation. For the LDH assay, 100 lL of

the medium was replaced with fresh RPMI 1640 medium

containing 5% FBS, and 10 lL of the protein sample was

added. The reduction in FBS concentration was done to

minimise baseline absorbance in the samples. After an addi-

tional 24 h of incubation, the CytoTox 96� Non-

Radioactive Cytotoxicity Assay Kit (G1781, Promega, Madi-

son, WI, USA) was used to quantify the amount of lactate

dehydrogenase (LDH) released into the culture medium.
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