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ABSTRACT: Hair dyeing is a widespread practice with potential
forensic value in individual identification, yet most analytical
approaches are destructive, time-intensive, or lack sensitivity for
trace residues. Surface-enhanced Raman spectroscopy (SERS)
offers a rapid, nondestructive, and highly sensitive alternative. We
introduce DyeSPY, the first forensic SERS and machine learning
platform for identifying oxidative and nonoxidative hair dye
colorants and predicting their perceptual colors. Using spectra
from 44 pure colorants, laboratory-prepared mixtures, and 60
commercial dye products applied to hair, we developed a three-
phase classification pipeline. Phase I distinguished oxidative from
nonoxidative dyes with up to 98.6% accuracy on hair using partial
least-squares discriminant analysis. Phase II achieved high-fidelity
colorant identification: for nonoxidative dyes, synthetic training via
linear spectral mixing yielded an F1 score of 0.88 with 85.7% mean subset recall; for oxidative dyes, an artificial neural network
attained perfect hair classification (F1 = 1.00) and 98.5% subset recall for dye solutions. Phase III predicted perceptual colors with
≥97.5% accuracy by using cosine similarity. Validation on external data sets confirmed robust performance despite substrate
variability. By integrating chemically informed modeling of stable and reactive dye systems, DyeSPY establishes a forensic-grade
framework for accurate and interpretable hair dye analysis.

1. INTRODUCTION
Colorants are chemicals that produce or contribute to color in
dyes, which may contain one or more such compounds. They
fall into four main categories: primary intermediates, couplers,
pigments, and direct dyes. Primary intermediates, containing
aromatic rings and amine groups, require oxidation to quinoid
or imine forms to generate color. Couplers react with
intermediates to produce new hues or modify tones, while
pigments alter color without reacting. Direct dyes impart color
independently, without oxidation or chemical bonding.
Permanent and demi-permanent dyes typically combine
primaries and couplers (and sometimes pigments), whereas
semipermanent and temporary dyes rely largely on direct dyes.
The main distinction between pigments and direct dyes lies in
binding: pigments do not necessarily bond strongly to
substrates.
The practice of hair dyeing is common among both men and

women, with prevalence rates ranging from 11 to 48% among
adult men in North America and 50 to 80% among adult
women in the United States (US), Japan, and the European
Union (EU).1,2 While often used as a form of self-expression,
many individuals continue dyeing despite adverse reactions,
suggesting that, for many, hair coloring is viewed as essential.3

Given its widespread use and significance for personal identity,

hair dye may have potential applications in forensic science,
particularly in aiding suspect-to-perpetrator distillation.
Forensic hair analysis generally relies on light microscopy to

determine the racial origin, treatment, and other characteristics
of hair, including the color of dye, if applicable.4 In fact, dyed/
bleached hair is said to be more useful to the examiner than
untreated hair evidence.5 However, dye classification in this
manner faces high subjectivity and, as purported by a popular
handbook, requires the presence of a follicular root, which is
rapidly degraded (if present) after leaving the scalp.4,5 This
weakness has been treated, with varying levels of “success”, by
several spectral techniques such as high-performance thin-layer
chromatography (HPTLC), X-ray fluorescence (XRF), and
ultraviolet−visible (UV−vis) spectroscopy.6−8 These techni-
ques can be used to reveal the color or colorants from the hair
cuticle using methods such as characteristic peaks and artificial
intelligence, reducing cognitive bias. However, the most widely
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recognized techniques for individualistic characterization of
dyes are infrared (IR) and Raman (micro)spectroscopy (RS),
given the existence of validated, large reference libraries.9 Many
of these techniques fall short of detecting very minute
quantities of colorants or pigments.6,9,10

Fortunately, surface-enhanced RS (SERS) has reported
success at individualizing colorants in extremely low
concentrations, even for single molecules.11 This is accom-
plished by the use of plasmonic nanoparticles, made of metals,
that enhance the signal of conventional Raman spectra by
about a million-fold.12 SERS, in turn, shows promise for
detecting extremely degraded colorants, which forensic
analysts may require.13−18 However, current SERS-based
analysis of hair dyes focuses on the classification of the hair
dye product itself, i.e., the overall dye signal and not the
individual colorant(s). This fails to consider that companies
may change their ingredients whenever they wish. Not to
mention that prolonged degradation of colorants in dyes on
hair lowers the probability of their differentiation among other
dyes.14 Therefore, the prediction and consequent comparison
of colorants within dyes on hair become more realistic.
One of the most sophisticated databases for colorant-specific

detection, developed by Palenik and co-workers in 2011, are
search-based libraries that allow the user to match reference
spectra with unknown samples.9 A fundamental limitation of
this database, as indicated by both its structural composition
and discussion, is that it is primarily tailored toward fabric
analysis. This focus is underscored by a critical omission: the
absence of couplers. Couplers, essential chemical agents in
oxidative dye formulations, bind to primary intermediates
under oxidative conditions, initiating polymerization and
thereby altering the molecular structure to generate new
chromophores. The significance of couplers cannot be
overstated, given that they are fundamental constituents of
permanent hair dye formulations�products that dominate
nearly 80% of the global hair dye market.19 Consequently, any
database designed to accurately identify hair dyes must
integrate the inherent chemical transformations induced by
couplers, ensuring a more comprehensive and chemically
rigorous approach to forensic dye analysis.
Furthermore, identifying hazardous colorants in hair dyes is

critical for assessing toxicological risk. Certain colorants found
in hair dyes can be classified as mutagenic, genotoxic,
carcinogenic, and skin and eye irritants.20 The U.S. Food
and Drug Administration (FDA), under the Federal Food,
Drug, and Cosmetic Act of 1938 (FD&C Act), restricts all
colorants added to cosmetics, including hair dyes.21 However,
to date, the FDA has only banned one colorant (previously)
used in hair dye products: lead acetate.22 In contrast, the
European Union had, as of 2017, banned nearly 50 colorants
and imposed restrictions on more than 50 others.23,24 This
regulatory gap highlights a concerning issue�colorants
banned for safety reasons in the EU may still be legally used
in products sold in the U.S., posing ongoing health risks to
American consumers. For instance, many salons’ stylists mix
hair dyes together to achieve their clients’ desired hair color.25

Thus, identifying a single hair dye becomes problematic in this
scenario, and identifying the specific colorants that may have
elicited the adverse reaction becomes more useful.
The goal of this study is to use SERS and machine learning

to build a highly accurate database for the identification of
colorants in hair dyes. The database will be designed to output
possible colorants within a tested sample, as well as the

possible colors declared by commercially available dye
products. The described database has the potential to aid
forensic investigations for victim and perpetrator/suspect
identification, as well as for identifying hazardous colorant
ingredients in hair dyes for toxicological findings.

2. MATERIALS AND METHODS
2.1. Colorants. A total of 44 colorants were purchased

from several suppliers and were used as received (see Section
2.2 for details on how each colorant was used as samples).
Table S1 reflects all colorants used throughout this experiment,
including their names, Chemical Abstracts Service (CAS)
number, supplier, whether they are considered oxidative or
nonoxidative, type of colorant, and our experiment-specific
identification (ESID) code.
Some colorants, such as 3-nitro-p-hydroxyethylaminophenol

and 2-amino-6-chloro-4-nitrophenol, can act as primaries,
couplers, or direct dyes, depending on the conditions. In
oxidative environments, they may react with other inter-
mediates via hydroxyl or amine groups or oxidize independ-
ently to form quinonoid or imine-like structures that enhance
conjugation and charge transfer. In nonoxidative settings, their
amino and nitro substituents alone generate internal charge
transfer, producing visible color through altered electronic
transitions. Although such compounds exhibit multifunctional
behavior, they are categorized here as oxidative couplers, since
they are typically formulated alongside other oxidative dyes.
The implications of this classification are discussed in Section
3.2.

2.2. Sample Preparation. 2.2.1. Model Training
Samples. Oxidative hair dyes consist of approximately 80%
of hair dye market shares in the EU and US.19 Accordingly, we
calibrated the model using hair dyes (D1-D60) representative
of commercially available formulations, with 73.3% corre-
sponding to permanent and demi-permanent dyes (44
products) and the remaining 26.7% to semipermanent dyes
(16 products) (Table S2). The hair dyes chosen this way were
restricted to those for which we possessed colorants for.
All colorants were initially diluted to 20% (w/v) solutions in

Type I ultrapure water, and a 20% (w/v) hydrogen peroxide
solution was subsequently prepared. Samples of single
colorants found in Table S1 were prepared by diluting each
to 2% (w/v) in Type I ultrapure water. In other words, 2 μL of
colorant (20%), 2 μL of H2O2 (20%), and 16 μL of water were
used for primary intermediates, and 2 μL of colorant and 18 μL
of water were used for direct dyes. For couplers, which do not
give color on their own but rather alter the absorption of
primary intermediates, these were prepared by themselves
since Raman can detect organic dyes and also by mixing one
with each primary intermediate for a total of 110 additional
samples (5 primary intermediates × 22 couplers). Samples
prepared this way consisted of 2 μL of primary intermediate
solution, 2 μL of coupler solution, 2 μL of H2O2 solution, and
14 μL of water.

2.2.2. Model Validation Samples. Colorants found in D1−
D60 were mixed appropriately to optimize our database
(validation) in preparation for real product sample testing. All
validation samples (artificially prepared dyes, a-[D#]) were
made by bringing the final concentration of appropriate
colorant(s) from D1−D60 to 2% each; additionally, hydrogen
peroxide was added to reach 2% as well (if applicable). It
should be noted that not all colorants in Table S1 will be
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utilized this way. This work is intended to further gauge the
specificity of our database.
2.2.3. Model Testing Samples. The models reported here

were tested by analyzing hair dyes from Table S2 (i) in
solution (sD1−sD60) and (ii) for their intended purposes: on
hair (hD1−hD60). This was done for all oxidative hair dyes by
mixing the dye and Ion Sensitive Scalp 20-grade developer at a
1:1 ratio and carefully massaging the mixture into virgin,
unbleached, light-blonde hair from an unknown source. Hair
collected this way came from a volunteer at a local salon shop.
The volunteer collected hair from a customer from the apron,
and it was rinsed with distilled water before use. SERS analysis
was conducted on the undyed hair to visually confirm the
absence of colorants through spectral output (Figure S1). All
semipermanent dyes were used directly on the hair and gently
massaged by hand. The dyes were allowed to rest on the hair
according to package instructions (varied). After the allotted
time, excess dye was rinsed off under cold, low-pressure tap
water (to mimic real dyeing practices) by using a small-pore
strainer and left to air-dry at room temperature before analysis.
The solutions of all dyes, sD1−sD60, were sampled by

adding a drop (or drop-size) of the dye to 200 μL of ultrapure
water, as well as a drop of developer, if applicable. These
samples were then vigorously mixed for 30s by trituration and
left to react for 1 h.

2.3. Gold Nanorod Synthesis. Chemicals utilized for
synthesis were: Milli-Q ultrapure water, type I (H2O),
cetyltrimethylammonium bromide (CTAB, VWR Interna-
tional), gold(III) chloride hydrate (HAuCl4·H2O, Aldrich),
ascorbic acid (Sigma-Aldrich), sodium borohydride (NaBH4,
Sigma-Aldrich), and silver nitrate (AgNO3, Sigma).
AuNRs were synthesized using a modified protocol from

Burrows et al.26 First, a 0.1 M CTAB solution was prepared by
suspending 0.3554 g of CTAB up to 9.75 mL of H2O. This
solution was then stirred at 200 rpm and heated to 40 °C until
the solution turned from white to clear (to dissolve the
CTAB), at which point it was brought back down to 26 °C.
While waiting, a fresh cold solution of 0.01 M NaBH4 was
prepared by first diluting 0.1 M NaBH4 in 10 mL of H2O and
keeping it on ice until its rapid use. Our seed solution was
prepared by adding 250 μL of 0.01 M HAuCl4 into the CTAB
solution and stirring for 1 min at 26 °C. After 1 min, 600 μL of
the 0.01 M NaBH4 solution was added and left to stir for 1 h at
200 rpm at 26 °C. This resulted in a honey-colored solution.
The growth step, which forms our nanorods, was performed by
adding 500 μL of 0.01 M HAuCl4 to 9.5 mL of 0.1 M CTAB
solution, followed by 100 μL of 0.01 M AgNO3, 55 μL of 0.01
M ascorbic acid, and 12 μL of the prepared seed solution. The
mixture was gently stirred for 2 h and immediately collected
for centrifugation at 11,000 rcf for 15 min. The supernatant
was discarded, and the pellet was resuspended in the same
volume of H2O as the supernatant was. This process was
repeated two more times for a total of three washes. The final
pellet was suspended in a quarter volume of the original
volume to concentrate. The AuNRs were characterized using
an M4 UV−visible (UV−vis) spectrophotometer (VWR
International, Inc.) (Figure S2, left) and a Titan Themis 300
transmission electron microscope (TEM), Figure S2. Three
UV−vis spectra were collected from a 1:10 dilution of AuNRs
to H2O, as shown in Figure S2, right.

2.4. (Surface-Enhanced) Raman Spectroscopy. Vali-
dation samples were prepared by mixing 5 μL of AuNRs with
2.5 μL of artificial dye and depositing the mixture on a glass

coverslip. For hair samples, 5 μL of AuNRs was applied per
strand to coat the cuticle. Solutions were analyzed with the
laser positioned at the center of the droplet, while hair was
analyzed at the medulla and proximal regions. Five SER spectra
were collected per dye or dye-developer solution, and 15 per
hair sample (five spectra per strand, three strands). Addition-
ally, dye application was performed once per product;
however, spatial replication across strands and multiple
acquisition points were used to capture intrasample hetero-
geneity. Data were acquired using a custom-built TE-2000U
Nikon inverted confocal microscope with a 20× objective and
a 785 nm solid-state CW laser (3 mW at sample, ND filter).
Spectra (308−1952, ∼1.5 cm−1 resolution) were collected via
the same objective, passed through a 10/90 beam splitter into
an IsoPlane-320 spectrometer (600 groove/mm, 750 nm
blaze), and detected with a PIX-400BR CCD. A Semrock
LP03-785RS-25 long-pass filter blocked elastically scattered
light. Acquisition times ranged from 1 to 20 s. Calibration with
benzonitrile established a center wavelength of 784.7 nm.
Instrument performance was monitored daily using benzoni-
trile Raman intensity at 1600 cm−1, yielding stability values of
185−536 counts·s−1 ·mW−1, with >100 counts consistently
supporting reliable analyses.

2.5. Chemometric Analysis. All spectra were trimmed to
the 450−1650 cm−1 range to reduce edge noise, baseline-
corrected using the asymmetric least-squares (ASLS) algorithm
(λ = 1 × 105, p = 0.01), smoothed using a first-order Savitzky−
Golay filter (window length = 7, polyorder = 1), and area-
normalized prior to analysis, as displayed in the figures. This
was done using Python 3.13 and the following libraries:
NumPy, pandas, SciPy, pybaselines, and scikit-learn. A visual
demonstration of our data before and after preprocessing is
presented in Figure S3.
Furthermore, the following machine learning models were

trialed in this study: logistic regression discriminant analysis
(LRDA), partial least-squares discriminant analysis (PLSDA),
random forest discriminant analysis (RFDA), extreme gradient
boosting trees discriminant analysis (XGBDA), artificial neural
networks discriminant analysis (ANNDA), and cosine
similarity-based nearest neighbor classification (CSNNC).
These models represent some of the most effective approaches
reported in spectral classification literature.27−29 Each model
represents a distinct approach to feature discrimination,
ranging from probabilistic and projection-based methods to
tree ensembles, deep learning, and distance-based classifica-
tion. Model hyperparameters were tuned via a grid search
during cross-validation using artificially generated dye
mixtures. Table S3 provides a summary of each model’s
optimized parameters and the associated Python libraries used
for their implementation.
Additionally, accuracy, F1 scores, sensitivity, subset recall,

and Matthews correlation coefficient (MCC) were calculated
for each model, where applicable, using the Python libraries:
scikit-learn, NumPy, and pandas. The F1 score represents the
harmonic mean of precision and recall, providing a balanced
metric that is especially useful when evaluating performance on
imbalanced data sets. The MCC is a robust metric for binary
classification that considers true and false positives and
negatives, offering a more informative and balanced measure
than accuracy alone, particularly under class imbalance. The
same seeds were used in all models that generate random
subsets of features (RFDA, XGBDA, and ANNDA). All
predictions were made using a strict threshold of greater than
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0.5, unless stated otherwise. All figures were generated using
the matplotlib and seaborn Python libraries to ensure
publication-quality visualizations of spectral trends, model
performance, and class-wise comparisons.

3. RESULTS AND DISCUSSION
3.1. First Impressions of Data. Constructing a robust

database for colorant recognition requires first discerning the
extent to which fluctuations in dye SERS signals depart from
their authentic colorant signatures. The assumption that

colorants are the primary contributors to the SERS signal of
dyed hair has not been rigorously validated. To date, there
appears to be no comprehensive study that directly compares
the SERS spectra of individual colorants in isolation to those of
commercial hair dyes containing them. This hypothesis was
initially proposed in 2015, when Kurouski and Van Duyne
observed that the SERS spectra of dye formulations in solution
closely resembled those obtained from dyed hair, suggesting
minimal structural or chemical alteration during application.30

A similar observation was made by Holman and colleagues in

Figure 1. Examples for mean SER spectra and standard error (SE) of artificial dyes, real dye solutions, and dyed hair for (left) nonoxidative and
(right) oxidative hair dyes. Dyed hair (hD#), commercial dye solutions (sD#), and their colorant-based artificial mixtures (aD#). Standard error
bands are plotted but may be obscured due to high spectral similarity across replicates.

Figure 2. Comparison of SER spectra for two dyes, nonoxidative (top) and oxidative (bottom), and their equal-weighted colorant mixtures (Linear
Mixture). Cosine similarity scores are reported in each panel. The high similarity observed for aD14 supports spectral additivity in nonoxidative
dyes, while the lower similarity for aD27 suggests mixture-dependent chemical transformation or nonlinear mixing in oxidative dye systems.
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2024 during investigations into the effects of soil erosion on
hair dye retention using SERS.14

To further evaluate the contribution of colorants, we
prepared equimolar mixtures of isolated dye components
corresponding to known commercial formulations (Table S2).
The resulting SER spectra demonstrated a high degree of
spectral similarity to both commercial dyes and dyed hair
samples (Figure 1). Importantly, the consistency in peak
positions across synthetic mixtures, commercial products, and
dyed hair indicates that the chemical identity of the colorants is
largely preserved postapplication. While the signal intensity
varied, these differences are likely due to proprietary
concentration levels in commercial dyes rather than chemical
alterations.
To further probe how colorants contribute to dye spectra,

we evaluated whether their signals combine in a linear or
nonlinear fashion. Using linear additive spectral mixing
(LASM), we generated equal-weight combinations of individ-
ual colorants and compared them to the corresponding in-lab
equimolar mixtures with cosine similarity (Figures 2 and 3).
Because cosine similarity emphasizes the spectral shape rather
than intensity, it provides a structure-focused measure of
alignment. For nonoxidative dyes, such as aD14, the synthetic
mixtures closely matched the experimental spectra (cosine

similarity of 0.910), consistent with additive contributions of
the individual colorants. By contrast, oxidative dyes showed
weaker alignment; for example, aD27 yielded a cosine
similarity of only 0.719, suggesting that chemical trans-
formations alter their spectral profiles. Across all samples,
nonoxidative dyes exhibited significantly higher cosine
similarity (0.892 ± 0.075) in comparison to oxidative dyes
(0.767 ± 0.038). A right-sided Welch’s t-test confirmed this
difference (t = 4.873, p = 0.0004), reinforcing that non-
oxidative dyes preserve colorant signatures more faithfully,
while oxidative dyes undergo structural changes that
complicate spectral interpretation.
These results can be explained by the inherent reaction

(un)involved in nonoxidative vs oxidative dyes. As shown in
Scheme S1, oxidative dyeing involves the in situ formation of
novel chromophores through the oxidation of primary
intermediates like p-phenylenediamine, followed by coupling
with agents such as resorcinol. These reactions generate new
vibrational features that are not present in the unreacted
(couplers) or self-reacted (primary) components, making
spectral reconstruction from individual precursors unsuitable.
This key distinction underscores the need to treat oxidative
and nonoxidative dye systems separately when developing
spectral reference models for forensic classification.

Figure 3. Comparison of cosine similarity scores between oxidative and nonoxidative hair dyes. Each distribution is visualized as a violin plot with
overlaid data points. A one-tailed Welch’s t-test indicated that nonoxidative dyes had significantly higher cosine similarity scores than oxidative dyes
(right-tailed p = 0.0004).

Scheme 1. Preliminary Architecture of the DyeSPY Platforma

aSample refers to a SER spectrum of a hair dye or dyed hair.
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3.2. Database Functionality. Accurate grouping of
colorants, such as permanent vs direct or oxidative vs
nonoxidative, is critical for meaningful analysis. Marketing
claims often blur these distinctions, as in product D49, labeled
“permanent” despite containing only Basic Red 51, a direct
dye. In such cases, direct dyes act independently, producing
SER signals that remain largely unaltered unless exposed to
extreme oxidative conditions, which may degrade their Raman
features. Direct dyes can also appear in oxidative formulations
(e.g., D39), where their contribution depends on functional
groups and possible binding. Outcomes may range from simple
additive overlaps to complete spectral shifts from chemical
interactions or degradation. Moreover, some colorants exhibit
context-dependent behavior, functioning as direct dyes,
couplers, or intermediates, depending on the oxidative
environment, for example, 3-nitro-p-hydroxyethylaminophenol
in products D10−D12 and in certain permanent dyes.
Given this complexity, DyeSPY adopts a tiered modeling

framework (Scheme 1). Phase I first classifies spectra as
oxidative or nonoxidative. In Phase II, nonoxidative samples
are then analyzed using a predictive linear-overlap model, while
oxidative samples are classified using a mixture-specific model
to account for chemical transformations. Phase III sub-
sequently predicts perceived color based on simplified product
categories. Within this framework, products like D10−D12 and
D49, although marketed as semipermanent or permanent, are
treated as nonoxidative due to their underlying spectral
behavior, ensuring that classification aligns with chemical
reality rather than marketing labels.

3.3. Phase I�Is the Sample Oxidative or Non-
oxidative? In this phase, multiple machine learning models
(Tables 1 and S3) were trained on spectra from direct dyes

(nonoxidative), primary intermediates (oxidative), and binary
mixtures of primaries and couplers (oxidative), the latter
included to capture the composite spectral signatures
generated during oxidative dye formation (Scheme 1).
Validation results (Table 2) showed consistently high
performance across models in distinguishing oxidative from
nonoxidative dyes. PLSDA and CSNNC achieved perfect
classification on all metrics, demonstrating exceptional robust-
ness in capturing subtle spectral differences. LRDA, RFDA,
and XGBDA also performed extremely well, each yielding
global F1 scores above 98% and high Matthews correlation

coefficients (MCC), reflecting well-balanced predictions across
classes. By contrast, ANNDA underperformed, reaching only
78% global F1 and accuracy; while it exhibited perfect
sensitivity for oxidative dyes, it failed entirely to identify
nonoxidative dyes, resulting in 0% sensitivity and MCC for
that class.
After testing, interestingly, both linear models (LRDA and

PLSDA) outperform the nonlinear models, namely, RFDA,
XGBDA, and ANNDA, in terms of overall accuracy for dyed
hair and dye solutions (Table 3). We note that the training
data set contained more oxidative than nonoxidative spectra
due to the inclusion of primary-coupler mixtures, which may
have contributed to the asymmetric sensitivity observed. While
PLSDA and CSNNC remained robust under this imbalance,
the ANNDA architecture appeared more prone to overfitting
toward the dominant oxidative class, resulting in 0% sensitivity
for nonoxidative dyes. PLSDA stands out as the top-
performing model overall, demonstrating the most balanced
and accurate classification for both dyed hair and dye solutions.
It achieved 98.56% accuracy on hair with 100% sensitivity for
oxidative dyes on hair and 94.9% for nonoxidative dyes on hair,
maintaining 88.33% accuracy on dye solutions with solid class
sensitivities (90.7% oxidative, 82.35% nonoxidative). This
balance of high accuracy and strong sensitivity for both classes
suggests that PLSDA may be the most reliable and
interpretable model for Phase 1.
CSNNC, which was validated to perform well, achieved

97.78% accuracy on hair with perfect oxidative sensitivity
(100%) and strong nonoxidative sensitivity (92.16%), but its
performance on dyes alone dropped to 87.33% accuracy, again
with perfect oxidative but reduced nonoxidative sensitivity
(55.29%), suggesting generalization limitations. This difference
likely reflects its underlying analytical basis: unlike PLSDA, a
linear model that leverages spectral magnitude and variance-
covariance structure, CSNNC operates on cosine similarity,
emphasizing angular rather than intensity-based relationships.
While this makes it robust to intensity variation, it can miss
subtle spectral differences, particularly among nonoxidative
dyes. These findings highlight the need to assess both overall
accuracy and per-class sensitivity in chemically complex data
sets like SERS spectra. For example, XGBDA and RFDA
produced high accuracies (e.g., XGBDA at 92.44% on hair) but
showed limited nonoxidative sensitivity (73.33% on hair;
68.24% on dyes), while ANNDA failed entirely to identify
nonoxidative dyes (0% sensitivity) despite superficially strong
overall accuracy driven by perfect oxidative classification. Such
imbalances render these models unsuitable for the unbiased
detection of both dye classes.
To further assess the robustness of PLSDA as the primary

Phase I classifier, we examined its decision criteria by plotting
the loading profiles for the first three latent variables (LV1−
LV3) alongside a correlation heatmap of positive and negative
loadings (Figure S4). Six dominant spectral regions consis-
tently emerged across these latent variables, indicating stable
discriminatory features rather than noise-driven separation.
Across LV1−LV3, the ∼1600 cm−1 band carries substantial
negative loadings, consistent with an aromatic ring C=C
stretch.31 Interestingly, we also observe systematic sign
changes in the 1060−1300 cm−1 region, which aligns with
various (mainly para-) substituted aromatic constituents,
including (primary) amine C−N stretching/deformation in
the 1260−1300 region.32,33 The recurrence and sign-reversal of
these loadings across LVs indicate that the model distinguishes

Table 1. Arsenal of Machine Learning Models, Their Type
of Feature Discrimination, and a Short Summary of How
They Work

model model type mode of function

LRDA linear learns a linear decision boundary by estimating
class probabilities using logistic regression

PLSDA linear projects data onto latent variables that maximize
covariance with class labels, then classifies based
on linear separation

RFDA nonlinear constructs an ensemble of decision trees; classifies
based on majority vote across trees trained on
random feature subsets

XGBDA nonlinear builds an additive model of boosted decision trees
to minimize classification loss and capture
complex feature interactions

ANNDA nonlinear uses a multilayer neural network to learn
hierarchical nonlinear representations for class
separation

CSNNC nonparametric assigns class labels based on cosine angle
similarity to training instances
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dye pathways through consistent spectral contrasts rather than
a single-feature dominance (i.e., similar magnitudes across
LVs). This supports both the chemical plausibility and
statistical stability of the Phase I classification.
In summary, the comparative evaluation of machine learning

models in Phase I highlights PLSDA as the most balanced and
robust performer, offering high accuracy and strong sensitivity
for both oxidative and nonoxidative dye classes across hair and
dye solution data sets. CSNNC follows closely, particularly
excelling in hair analysis but showing some limitations in
generalization to dye solutions. These findings underscore that
high overall accuracy alone is insufficient for model selection in
spectroscopic classification tasks. Sensitivity for each class must
be carefully weighed, especially in domains such as forensic or
diagnostic chemistry where missing a minority class can carry
significant consequences.

3.4. Phase II�What Colorants Are in the Sample?
3.4.1. Nonoxidative Colorant (Mixture) Classification. Initial
efforts to classify nonoxidative dyes revealed substantial
challenges across all model types, even after extensive
hyperparameter optimization. The highly overlapping and

subtle spectral features of direct dyes on hair limit the ability of
conventional models to generalize effectively. To assess the
feasibility, we applied a minimum performance threshold of
either 70% subset recall (whether there is at least one correctly
predicted colorant per sample) or a global F1 score.
Approaches failing to meet this benchmark were excluded
from further development. The models trialed and their
outcomes are summarized in Table 4.

The most effective strategy involved generating synthetic
spectral mixtures through linear additive spectral mixing
(LASM) of pure direct dye spectra with equal weighting
(Figure 4), an approach that mimics the composite nature of
dye formulations while minimizing variability from matrix
effects. Models trained on these synthetic data sets consistently
exceeded the 70% subset recall threshold, achieving a global F1
score of 0.8824 and a mean subset recall of 85.7%, with full
compositional matches in most dyed hair samples (Table 5)
and strong performance on commercial dye solutions. While
overall results were robust, discrepancies arose in mixtures with
overlapping colorants; for example, AX+BX+DX was correctly
identified in hD59, but hD12 was misclassified as AX+GX.
Such errors likely reflect nonlinear matrix effects, spectral

Table 2. Hyperparameters Chosen and Respective Model Metrics for Phase I Validation Using aD1−aD60a

model hyperparameters global F1 score, % accuracy, % oxidative classification sensitivity, %
nonoxidative classification
sensitivity, % MCC

LRDA C: 100 98.40 98.4 98.96 96.15 0.9566
Max_iter: 500
penalty: L2

PLSDA LVs: 17 100 100 100 100 1.00
RFDA Max_depth: 5 99.6 99.6 100 98.0 0.9886

Min_samples_split: 10
N_estimators: 100

XGBDA eta: 0.05 99.2 99.2 99.49 98.0 0.9772
Max_depth: 1
N_estimators: 500

ANNDA dropout: 0 78.0 78.0 100 0.00 0.00
optimizer: SGD
eta: 0.01
batch size: 32
L2:0
L1:0

CSNNC N/A 100 100 100 100 1.00
aN/A: not applicable.

Table 3. Testing Hyperparameter Tuned Phase I Models
Using Dyed Hair (hD1−hD60) and Commercial Dye
Solutions (sD1−sD60)

model
test
set accuracy, %

oxidative
classification
sensitivity, %

nonoxidative
classification
sensitivity, % MCC

LRDA hair 96.11 98.43 93.2 0.9089
LRDA dye 90.0 95.35 76.47 0.7615
PLSDA hair 98.56 100 94.9 0.9645
PLSDA dye 88.33 90.7 82.35 0.7318
RFDA hair 92.0 94.71 83.56 0.8035
RFDA dye 83.33 89.18 63.77 0.5622
XGBDA hair 92.44 100 73.33 0.8157
XGBDA dye 89.33 97.67 68.24 0.7292
ANNDA hair 71.67 100 0.0 0.0
ANNDA dye 71.67 100 0.0 0.0
CSNNC hair 97.78 100 92.16 0.9463
CSNNC dye 87.33 100 55.29 0.6855

Table 4. Nonoxidative Classification Experimental
Workflowa

initial model attempts

preliminary
global F1
score/subset
recalla conclusion

trained model on pure direct dye spectra
alone

<70% both unsuccessful

trained model on spectra from laboratory-
made nonoxidative dye mixtures

<70% both unsuccessful

Improved and Final Approach
generated synthetic spectra by linearly
combining pure direct dye spectra with
equal weighting; model trained on these
synthetic mixtures performed significantly
better at identifying the individual colorants

>70% subset
recall
(ANNDA)

successful

aScores from testing on dyed hair spectra following cross-validation
model selection.
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overlap between structurally similar dyes, or concentration-
dependent detectability limitations in the training set. These
outcomes underscore the need to refine synthetic training

strategies by incorporating more diverse and compositionally
complex mixtures to further improve the generalizability.
Equally notable were the results obtained for commercial

dye solutions, as shown in Table S4. The global F1 score was
0.7647 for this model, with a mean subset recall of 71.4%.
Despite these solutions presenting greater formulation
variability and potential undisclosed ingredients, the model
still maintained strong performance on several combinations.
For example, complete identification was achieved for complex
formulations such as (LL)+AX+DX+FX+GX and JX+LX+MX
+PX, reaffirming the model’s robustness when applied to real-
world product variability. However, a few samples, namely,
sD52, sD56, sD58, and sD59, showed zero subset recall,
indicating occasional limitations, often due to missing or
misidentified minor components or labeling ambiguities within
the commercial products.
In summary, the LASM-based synthetic data approach offers

a powerful and practical solution for training machine learning
models to identify colorant mixtures in forensically relevant
dyed hair samples. By generating controlled, representative
spectra from known pure dye components, this method
overcomes challenges posed by experimental variability, matrix
interference, and limited labeled mixture data. The high subset
recall achieved across both laboratory-prepared and commer-
cial dye formulations highlights the approach’s effectiveness for
real-world forensic casework, where accurately determining the
full composition of applied hair dyes is essential for evidentiary
comparison, source attribution, and investigative reconstruc-
tion.

3.4.2. Oxidative Colorant (Mixture) Classification. As
discussed in Sections 3.1 and 3.2, LASM is ill-suited for
oxidative colorant mixtures due to their reactive chemistry.
Thus, the oxidative colorant classification took slightly different
approaches, as described in Table 6.
The initial modeling attempt, which used CSNNC to detect

oxidative dye primaries, is summarized in Tables S5 and S6 for
dyed hair and commercial dye solutions. Although the model

Figure 4. Mean and SE for SER spectra of LASM-generated mixtures (synD#), dyed hair (hD#), commercial dye solutions (sD#), and their
colorant-based artificial mixtures (aD#). LASM-generated mixtures using averages from each pure colorant to generate its mixture and therefore
have no SE. Standard error bands are plotted but may be obscured due to high spectral similarity across replicates.

Table 5. Performance Summary of Nonoxidative Dye
Mixture Classification Using Synthetic Training Data
Generated via Linear Additive Spectral Mixing (LASM) for
Dyed Haira

ESID(s)

number
of
spectra

true
mixture

(majority)
predicted
mixture

proportion of
samples
predicted
that, %

subset
recall, %

hD10 15 (LL)+AX
+DX+FX
+GX

AX+DX
+FX+GX

100 100

hD11 15 (LL)+CX
+KX+JX

JX 100 100

hD12 15 (LL)+AX
+BX+GX

AX+GX 100 100

hD13;
hD49;
hD52

45 HX HX 100 100

hD14 15 AX+DX
+FX+GX

AX+DX
+FX+GX

100 100

hD50 15 IX IX 100 100
hD52 15 DX FX 100 0
hD53;
hD57

30 NX NX 100 100

hD54 15 FX+MX
+OX

FX 100 100

hD55 15 JX+LX
+MX+PX

JX+LX
+MX
+PX

100 100

hD56 15 AX+HX AX+HX 100 100
hD58 15 KX 100 0
hD59 15 AX+BX

+DX
AX+BX
+DX

100 100

hD60 15 IX+NX IX+NX 100 100
aHyperparameters: layers = [512, 256], dropout = 0.3, optimizer =
RMSprop, eta = 0.0005, batch size = 16, L2 = 0.001, L1 = 0.000001.
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achieved 83−90% accuracy in identifying at least one correct
primary intermediate within the top two predicted labels, its
discriminatory power was limited. Many permanent dyes share
common primary structures (Table S2), reducing its forensic
utility. To overcome this, we adopted an improved strategy
using ANNDA trained on spectra from dyed hair and
commercial products. The model was trained on 20% of the
data set and tested on the remaining 80% to better simulate
forensic deployment conditions, where reference spectra are
limited relative to casework samples. This intentional reversal
of the conventional 70−30 or 80−20 split serves to stress-test
generalizability by maximizing exposure to unseen spectra and,
as supported by statistical learning theory,34,35 reduces the
variance of the generalization error estimate for a stricter
assessment of out-of-sample robustness. This design choice
prioritized failure-case detection over optimized in-sample
fitting, with the resulting performance summarized in Tables 7
and S7.
For dyed hair samples (Table 9), the model achieved perfect

classification for all tested combinations with a global F1 score
of 1.000 and a mean subset recall of 100%. Notably, even
highly complex mixtures containing six to eight colorants, such
as hD15 (D; AA; DD; FF; NN; OO; UU) and hD39 (B; C;
EE; FF; HH; OO; UU; DX), were correctly predicted in full.
These findings underscore the model’s ability to distinguish
nuanced spectral profiles when trained on authentic chemical
interactions embedded within the dyed substrate.
The classification performance for commercial dye solutions

was similarly robust, although with slightly more variability
(Table S7). The model maintained perfect subset recall and
majority prediction accuracy for nearly all samples, with a
global F1 score of 0.9821 and a mean subset recall of 98.5%.
The only exceptions were mixtures such as hD3/hD9, where
the true label was (C; D; E; DD; HH; PP) and the model
returned (A; D; AA; DD; OO; PP). While subset recall
remained at 100%, this discrepancy highlights the potential for
confounding among structurally or spectrally similar compo-
nents, particularly where colorants may share overlapping
absorption or scattering features. The improved classification
accuracy not only validates the use of data-driven spectral
models in forensic hair dye analysis but also reinforces the
importance of incorporating real oxidative behavior into the
training process.
Together, these findings support the implementation of

hybrid modeling pipelines: LASM-based synthetic spectra for
stable nonoxidative mixtures and empirical training on oxidized
formulations for chemically reactive permanent dyes. When

applied to forensic investigations, this approach maximizes
both coverage and specificity, enhancing the evidentiary value
of SER analysis in dyed hair trace evidence comparisons.

3.5. Phase III�What Is the Original Color? Color is one
of the most distinguishing features of dyed hair, making
accurate characterization essential for forensic comparisons.36

While traditional visual or spectroscopic methods provide
useful insights, subtle color differences arising from dye
formulation, manufacturing variations, and environmental
degradation can complicate a direct comparison. Compound-
ing this issue, commercial hair dye products are often labeled
with highly stylized names such as “Wrath,” “Dark Sand,” or
“Sour Candy” (see Table S2), which convey little about the
actual appearance of the dye. For example, few would intuit
that “Electric Paradise” refers to a bright pink hue. Such names
not only hinder objective classification but also hinder witness-
driven investigations. Asking a witness if they saw someone
with “Sour Candy” hair could result in confusion or
misidentification.
To address limitations in communication among forensic

analysts, investigators, and laypersons, we implemented a
simplified colorimetric labeling scheme based on the visible
appearance of dyes on hair (Table S8). This system prioritizes
clarity and consistency over brand-specific terminology.
Research by Emery and Webster shows that while basic
color categories are perceived consistently, nuanced hues vary
widely, supporting the use of standardized labels in forensic
contexts.37 Simplified classification reduces ambiguity in
casework, where subjective terms like “auburn” or “golden
chestnut” can create confusion in evidence comparison or
testimony. By grounding labels in perceptual consensus rather
than proprietary branding, our approach aligns with SWGMAT
guidelines, “[bridging] analytical precision with visual intelli-
gibility.”36

Since our goal was to infer hair dye identity from spectral
data, we adopted a machine learning approach that matches
each sample to the most spectrally similar dye class and then
assigns the corresponding simplified color. Given the like-
lihood of encountering degraded or low-quality evidence in the
casework, we avoided models dependent on spectral
magnitude, which can be affected by SERS enhancement
variability, colorant concentration variation, and sample
contamination. Instead, we trained a CSNNC that emphasizes
spectral shape over intensity, improving robustness in trace or
compromised forensic samples.
To ensure contextual accuracy and reduce bias from matrix-

specific spectral variability, we trained separate CSNNC
models for dyed hair samples and commercial dye solutions.
Each model was trained using 20% of the spectra from its
respective data set and evaluated on the remaining 80%. This
split preserved spectral heterogeneity in the test set and
emphasized the model’s ability to generalize across samples
(Table 8).
Additionally, to assess the impact of incorrect mixture

identification on the downstream color prediction, we
performed a controlled label-shuffling experiment. Specifically,
mixture IDs were randomly reassigned to all samples within
each model to simulate misclassification. Cosine similarity
scores between true and false pairings were then compared,
and we identified the optimal similarity threshold, known as
Youden’s J statistic, that maximized the difference between the
true positive rate and false positive rate (Table 8). This
threshold served as a decision boundary for distinguishing

Table 6. Oxidative Classification Experimental Workflowa

initial model attempts

preliminary
global F1
score/subset
recalla conclusion

trained on pure primary intermediates
alone and/or dual primary and coupler
mixtures.

>70% subset
recall
(CSNNC)

modest
success

trained model on spectra from laboratory-
made oxidative dye mixtures

<70% both unsuccessful

Improved and Final Approach
trained model using 20% of commercially
dyed hair and solution samples and
tested on the remaining 80%

>70% both
(ANNDA)

successful

aScores from testing on dyed hair spectra following cross-validation
model selection.
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genuine matches from spectral impostors. Cosine similarity
plots illustrating the separation between true and false pairings
are presented in Figure S5.
Using Youden’s J statistic to optimize the decision threshold,

the models successfully separated true mixture assignments
from shuffled (false) IDs based on cosine similarity.
Specifically, both models achieved high classification accuracy
for color characterization: 97.92% for dyed hair and 97.5% for

dye solutions. The optimal threshold was 0.9065 for hair and
0.9469 for dye solutions. Importantly, the maximum similarity
observed for shuffled IDs exceeded 0.99 in both data sets,
demonstrating the necessity of a carefully defined threshold to
prevent false positives. Despite this challenge, the models
maintained low false positive and false negative rates, with hair
samples showing particularly strong separation (FPR: 1.39%,
FNR: 2.78%).

Table 7. Performance Summary of Oxidative Dye Mixture Classification Using 20−80 Train-Test Partitioning of Dyed Hair
SER Spectraa

ESID(s)
number of
spectra true mixture (majority) predicted mixture

proportion of samples predicted
that, %

subset
recall, %

hD1 12 A+KK A+KK 100 100
hD2, hD33 24 D+AA+DD+FF+PP D+AA+DD+FF+PP 100 100
hD3, hD9 24 C+D+E+DD+HH+PP C+D+E+DD+HH+PP 100 100
hD4 12 D+E+RR D+E+RR 100 100
hD5 12 E+TT E+TT 100 100
hD6 12 A+KK+NN A+KK+NN 100 100
hD7 12 D+E+AA+FF+PP D+E+AA+FF+PP 100 100
hD8 12 D+PP D+PP 100 100
hD15 12 D+AA+DD+FF+NN+OO+UU D+AA+DD+FF+NN+OO+UU 100 100
hD16 12 D+DD+GG+NN+OO+QQ D+DD+GG+NN+OO+QQ 100 100
hD17 12 D+AA+OO+PP+TT D+AA+OO+PP+TT 100 100
hD18 12 D+AA+FF+TT D+AA+FF+TT 100 100
hD19 12 D+FF+OO+QQ+TT D+FF+OO+QQ+TT 100 100
hD20 12 D+DD+UU D+DD+UU 100 100
hD21 12 A+B+C+DD+FF+NN+OO A+B+C+DD+FF+NN+OO 100 100
hD22 12 A+AA+BB+DD+NN A+AA+BB+DD+NN 100 100
hD23 12 A+B+C+AA+DD+FF+NN A+B+C+AA+DD+FF+NN 100 100
hD24 12 B+AA+DD+OO+PP+JJ B+AA+DD+OO+PP+JJ 100 100
hD25 12 A+D+AA+DD+OO+PP A+D+AA+DD+OO+PP 100 100
hD26 12 A+DD+HH A+DD+HH 100 100
hD27 12 A+DD+FF+HH A+DD+FF+HH 100 100
hD28 12 A+E+DD+FF+HH A+E+DD+FF+HH 100 100
hD29 12 D+AA+DD+OO+PP D+AA+DD+OO+PP 100 100
hD30 12 D+DD+FF+GG+OO+QQ D+DD+FF+GG+OO+QQ 100 100
hD31 12 D+AA+DD+FF+OO+QQ D+AA+DD+FF+OO+QQ 100 100
hD32 12 D+AA+DD+FF+OO D+AA+DD+FF+OO 100 100
hD34 12 C+D+DD+OO+PP+IP C+D+DD+OO+PP+IP 100 100
hD35 12 C+D+DD+HH+IP C+D+DD+HH+IP 100 100
hD36, hD38 24 D+E+AA+OO+IP D+E+AA+OO+IP 100 100
hD37 12 E+AA+HH+IP E+AA+HH+IP 100 100
hD39 12 B+C+EE+FF+HH+OO+UU

+DX
B+C+EE+FF+HH+OO+UU
+DX

100 100

hD40 12 A+D+EE A+D+EE 100 100
hD41 12 B+C+AA+NN+OO B+C+AA+NN+OO 100 100
hD42 12 A+B+AA+DD+PP+UU A+B+AA+DD+PP+UU 100 100
hD43 12 A+B+C+AA+EE+UU A+B+C+AA+EE+UU 100 100
hD44 12 B+C+EE+FF+OO+PP+UU B+C+EE+FF+OO+PP+UU 100 100
hD45 12 B+C+D+DD B+C+D+DD 100 100
hD46 12 B+C+AA+DD B+C+AA+DD 100 100
hD47 12 B+C+DD+FF B+C+DD+FF 100 100
hD48 12 B+C+NN+OO B+C+NN+OO 100 100
hNRs 12 NRs NRs 100 100
aHyperparameters: layers = [1024, 512], dropout = 0, optimizer = RMSprop, eta = 0.001, batch size = 32, L1 = 0, L2 = 0.

Table 8. CSNNC Metric Results for the Color Characterization of True and Shuffled Mixture IDs

train/test
set

Youden’s J
threshold

min similarity to true
mixture

max similarity to shuffled (false)
mixture accuracy, %

false positive
rate, %

false negative
rate, %

hair 0.9065 0.8601 0.9996 97.92 1.39 2.78
dye 0.9469 0.6864 0.9903 97.5 3.33 1.67
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These results support the utility of CSNNC as a robust
method for classifying the color of dyed hair based on
predicted colorant mixtures, particularly under conditions
where absolute intensity is unreliable. The method proved to
be effective for both dyed hair and dye solutions, highlighting
its broad potential for forensic application.

3.6. Database Accessibility and Appearance. We
developed an application programming interface (API) to
enable the streamlined classification of SER spectra obtained
from dyed hair or commercial dye solutions. The API serves as
the operational backbone of the DyeSPY pipeline, handling
data preprocessing, pathway classification (oxidative vs non-
oxidative), colorant mixture identification, and perceptual color
prediction in a fully automated manner.
The API is modularized into three main phases, each linked

to independent scripts and pretrained (and hyperparameter

tuned) models, and is designed to ingest unknown samples and
return interpretable forensic results. Figure 5 outlines the
structure of the DyeSPY pipeline, including both dyed hair and
commercial dye modules, with explicit mapping between
phases, scripts, and trained model assets. This can be used as a
reference guide to understand the backbone of each script that
was modularized in the run_pipeline.py script for both
“DyedHairModules” and “CommercialDyeModules” character-
ization folders.
Figure 6 provides a test example of how an unknown

forensic sample, along with positive and negative controls,
would be processed through the API, demonstrating end-to-
end classification and decision support. A user can replace their
.csv file with the area where “DyeSPY_test.csv” is currently
occupied in the run_pipeline.py script. Their .csv file shall be
formatted to include their lab-specific ID number (“ID”) and

Figure 5. DyeSPY pipeline component summary for both dyed hair and commercial dye characterization modules.

Figure 6. Example of how users’ samples would be processed using our DyedHairModules pipeline. A user would change the file name on line 79
of run_pipeline.py, where DyeSPY_test.csv ensures that the file is formatted the same. NC: negative control (AuNRs on hair); NOX_PC:
nonoxidative positive control (hD14); OX_PC: oxidative positive control (hD21); ID001 = hD56; ID002 = hD26. A number of spectra per sample
were reduced to 3 for figure purposes and are recommended to still follow a minimum of 5 spectra per hair strand, with 3 hair strands per sample
(minimum of 15 spectra).
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Raman shifts that must include 450−1650 cm−1. Running the
run_pipeline.py script in the terminal displays the process and
predictions for each individual spectrum in the test file (Figure
6, right). Figure 7 shows the final lines of the script in
run_pipeline.py that save the summary results and how those
summary results are formatted.
To ensure accessibility, reproducibility, and cross-platform

deployment, the API was containerized using Docker. This
allows any user to build and run the complete pipeline with
simple commands in a virtualized environment that includes all
required Python packages (e.g., PyTorch, pandas, scikit-learn,

and pybaselines). All scripts, model weights, scalers, and label
files are version-controlled in a private GitHub repository
(available upon request and approval), allowing researchers to
(i) download and modify specific modules, (ii) push updates
for collaborative improvement, and (iii) maintain reproduci-
bility across forensic laboratories.
Additionally, the use of Docker containerization enables

users to execute the DyeSPY pipeline securely and efficiently
on their local machines without relying on external servers or
cloud-based resources. This local execution environment
allows all input files, intermediate results, and final outputs

Figure 7. Continued script and example.txt file for summary results using DyeSPY and the DyeSPY_test.csv data set. A user would change the file
name on line 94 of run_pipeline.py, where class_sum_test.txt is used to save a distinct summary file for records. The mispredictions shown in
class_sum_test.txt are to give readers an idea of how DyeSPY displays summary results for samples with spectra that take different paths and do not
represent the true results of samples used in this study.

Figure 8. Examples for mean SER spectra and SE of dyed hair found in Higgins and Kurouski42 (HiK) and Holman and Kurouski13 (HoK) (before
sun exposure) that are shared in this study (D1, D7, and D14) and one not shared (hD001) along with its misclassified colorants (GX and CX).
Standard error bands are plotted but may be obscured due to high spectral similarity across replicates.
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to be processed and stored directly on the user’s system.38

Such architecture is especially critical in forensic contexts,
where the integrity, confidentiality, and chain-of-custody of
evidentiary data must be rigorously maintained.38 By isolating
the application in a controlled container and avoiding
unnecessary network exposure, Docker ensures that sensitive
spectral data and case-related metadata remain fully protected
throughout the analysis process.

3.7. Cross-Study Validation. It is no secret that multiple
groups following the same nanoparticle synthesis protocol will
create various-sized AuNRs. These differences may be
attributed to the intrinsic purity of the chemicals used as
well as extrinsic factors such as the temperature of the room
where the reactions are performed, type of glassware (flask vs
beaker), instrumental error in stirring and heating, and so

on.39,40 The question then becomes whether differently
obtained AuNRs (and slightly different acquisition parameters)
will elicit the same accuracies for the samples reported here by
using our database.
Fortunately, our group has accumulated a large library of

dyed hair spectra over a large number of experi-
ments,13−17,13−17,41−44 each with their own synthesized
AuNRs, across several protocols. To sufficiently answer
questions on our databases’ performance against externally
(to this study) obtained SER spectra of dyed hair, we selected
only two studies: the spectral library from Higgins and
Kurouski42 and Holman and Kurouski (Figure 8).14 Higgins
and Kurouski demonstrated that through machine learning,
SER spectra could be used to identify over 30 dyes on hair with
97% accuracy. Importantly, 21 of the hair dyes used in that

Table 9. Cross-Study Validation of DyeSPY Using Raw SER Spectra of Dyed Hair Groups That Were Included in This Study
but Produced from Higgins and Kurouski,42 Utilizing the DyedHairModules Pipelinea

ESID
number of
spectra

Phase I
prediction Phase I actual Phase II prediction Phase II actual

Phase III
prediction Phase III actual

D1 50 oxidative
(82%)b

oxidative A+KK+NN (64%) A+KK (18%) no color match
(78%)

dark blue (0%)

D2 50 nonoxidative
(100%)

oxidative CX (100%) D+AA+DD+FF+PP no color match
(100%)

yellow brown

D3 50 oxidative (62%) oxidative IC C+D+E+DD+HH+PP
(8%)

no color match
(100%)

red brown

D4 50 oxidative
(100%)

oxidative D+E+RR (100%) D+E+RR no color match
(100%)

purple

D5 50 nonoxidative
(100%)

oxidative AX E+TT no color match
(100%)

dark red

D7 50 oxidative
(100%)

oxidative D+E+AA+FF+PP (60%) D+E+AA+FF+PP black (60%) black

D9 50 nonoxidative
(100%)

oxidative AX+GX (98%) C+D+E+DD+HH+PP red brown (98%) red brown

D10 50 nonoxidative
(100%)

nonoxidative AX+DX+FX+GX (100%) LL+AX+DX+FX+GX black (80%) brown (20%)

D11 50 nonoxidative
(100%)

nonoxidative JX (82%) LL+CX+KX+JX pink (100%) pink

D14 50 nonoxidative
(100%)

nonoxidative AX+DX+FX+GX (78%) AX+DX+FX+GX brown (100%) black

D15 50 oxidative
(100%)

oxidative IC D+AA+DD+FF+NN+OO
+UU (0%)

no color match
(70%)

brown

D16 50 nonoxidative
(100%)

oxidative No Match (62%) D+DD+GG+NN+OO
+QQ (0%)

no color match
(100%)

red brown

D17 50 oxidative
(100%)

oxidative D+E+AA+FF+PP (68%) D+AA+OO+PP+TT IC black (48%)

D18 50 oxidative
(100%)

oxidative D+DD+GG+NN+OO
+QQ (74%)

D+AA+FF+TT (18%) no color match
(68%)

brown (16%)

D19 50 nonoxidative
(90%)

oxidative (10%) No Match (84%) D+FF+OO+QQ+TT (0%) no color match
(100%)

brown

D20 50 oxidative
(100%)

oxidative D+AA+OO+PP+TT
(52%)

D+DD+UU (0%) black (68%) black

D21 50 oxidative
(100%)

oxidative B+AA+DD+OO+PP+JJ
(72%)

A+B+C+DD+FF+NN+OO
(0%)

no color match
(52%)

red brown

D22 50 oxidative
(100%)

oxidative B+C+AA+DD (96%) A+AA+BB+DD+NN no color match
(100%)

black

D23 50 oxidative (80%) oxidative B+C+AA+DD (80%) A+B+C+AA+DD+FF+NN light brown
(92%)

light brown

D24 50 nonoxidative
(74%)

oxidative (26%) No Match (60%) B+AA+DD+OO+PP+JJ
(14%)

dark purple
(54%)

dark purple

D25 50 oxidative
(100%)

oxidative D+AA+OO+PP+TT
(76%)

A+D+AA+DD+OO+PP
(24%)

black (76%) dark blue
(24%)

total
samples

total spectra Phase I
accuracyc

Phase II
accuracycde

Phase II nonoxidative
subset recallce

Phase II oxidative subset
recallce

Phase II subset
recallce

Phase III
accuracycef

21 1050 71.4% 62.9% 100% 83.3% 86.7% 66.7%
aIC: inconclusive for predictions with ≤50% spectral support. bPercentages indicate the proportion of spectra predicted in that category.
cCalculated at the sample level; spectral percentages do not affect these values. IC is treated as incorrect. dPhase II accuracy = (correct colorants ÷
total predicted colorants), averaged across samples. ePhase II and III metrics include only samples correctly classified in Phase I. fPhase III accuracy
counts “No Color Match” as correct for incorrect colorant predictions, but incorrect when true colorants are correctly predicted.
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Table 10. Cross-Study Validation of DyeSPY Using Raw SER Spectra of Dyed Hair Groups That Were Included in This Study
but Produced from Holman and Kurouski,13 Utilizing the DyedHairModules Pipelinea

ESID
number of
spectra

weeks in the
sun

Phase I
prediction Phase I actual Phase II prediction Phase II actual

Phase III
prediction

Phase III
actual

D1 50 0 oxidative
(100%)b

oxidative A+KK (100%) A+KK no color match
(100%)

dark blue

50 1 oxidative
(100%)

oxidative A+KK (100%) A+KK no color match
(100%)

dark blue

50 2 oxidative
(100%)

oxidative A+KK (60%) A+KK no color match
(100%)

dark blue

50 3 oxidative
(78%)

oxidative A+KK (78%) A+KK no color match
(100%)

dark blue

50 4 oxidative
(100%)

oxidative A+KK (100%) A+KK No Color Match
(100%)

dark blue

50 5 oxidative
(100%)

oxidative A+KK (74%) A+KK no color match
(100%)

dark blue

50 6 oxidative
(100%)

oxidative E+TT (66%) A+KK (34%) no color match
(100%)

dark blue

50 7 oxidative
(100%)

oxidative A+KK (68%) A+KK no color match
(100%)

dark blue

D1 samples D1 spectra D1 Phase I accuracyc D1 Phase II
accuracyc,d,e

D1 Phase II subset
recallc,e

D1 Phase III accuracyc,e,a

8 400 100% 85.7% 85.7% 14.3%
D7 50 0 oxidative

(100%)
oxidative D+E+AA+FF+PP

(52%)
D+E+AA+FF+PP IC black

(20%)
50 1 oxidative

(100%)
oxidative IC D+E+AA+FF+PP

(0%)
IC black

(32%)
50 2 oxidative

(100%)
oxidative D+AA+OO+PP+TT

(70%)
D+E+AA+FF+PP
(0%)

no color match
(100%)

black

50 3 oxidative
(100%)

oxidative A+D+AA+DD+OO
+PP (72%)

D+E+AA+FF+PP
(0%)

dark blue
(100%)

black

50 4 oxidative
(100%)

oxidative A+E+DD+FF+HH
(64%)

D+E+AA+FF+PP
(0%)

no color match
(94%)

black
(0%)

50 5 oxidative
(100%)

oxidative A+D+AA+DD+OO
+PP (100%)

D+E+AA+FF+PP dark blue
(100%)

black

50 6 oxidative
(100%)

oxidative E+TT (74%) D+E+AA+FF+PP
(0%)

no color match
(96%)

black
(0%)

50 7 oxidative
(100%)

oxidative E+TT (98%) D+E+AA+FF+PP
(0%)

no color match
(100%)

black

D7 samples D7 spectra D7 Phase I accuracyc D7 Phase II
accuracyc,d,e

D7 Phase II subset
recallc,e

D7 Phase III accuracyc,e,a

8 400 100% 50% 85.7% 57.1%
D14 50 0 nonoxidative

(100%)
nonoxidative AX+DX+FX+GX

(80%)
AX+DX+FX+GX brown (80%) black

(20%)
50 1 nonoxidative

(100%)
nonoxidative AX+FX+GX (62%) AX+DX+FX+GX

(38%)
brown (100%) black

50 2 nonoxidative
(100%)

nonoxidative AX+DX+FX+GX
(100%)

AX+DX+FX+GX brown (100%) black

50 3 nonoxidative
(100%)

nonoxidative AX+DX+FX+GX
(54%)

AX+DX+FX+GX brown (80%) black
(20%)

50 4 nonoxidative
(100%)

nonoxidative AX+DX+FX+GX
(98%)

AX+DX+FX+GX No Color Match
(68%)

black
(0%)

50 5 nonoxidative
(100%)

nonoxidative FX (56%) AX+DX+FX+GX
(38%)

brown (74%) black
(0%)

50 6 nonoxidative
(100%)

nonoxidative AX+DX+FX+GX
(52%)

AX+DX+FX+GX no color match
(60%)

black
(0%)

50 7 nonoxidative
(82%)

nonoxidative DX+FX (54%) AX+DX+FX+GX
(6%)

no color match
(100%)

black

D14
samples

D14 spectra D14 Phase I accuracyc D14 Phase II
accuracyc,d,e

D14 Phase II
subset recallc,e

D14 Phase III accuracyc,e,f

8 400 100% 100% 100% 0%
total
samples

total
spectra

Phase I
accuracyc

Phase II
accuracyc,d,e

Phase II nonoxidative
subset recallc,d

Phase II oxidative
subset recallc,d

Phase II subset
recallc,e

Phase III accuracy

24 1200 100% 78.6% 100% 85.7% 90.5% 23.8%

aIC: inconclusive for predictions with ≤50% spectral support. bPercentages indicate the proportion of spectra predicted in that category.
cCalculated at the sample level; spectral percentages do not affect these values. IC is treated as incorrect. dPhase II accuracy = (correct colorants ÷
total predicted colorants), averaged across samples. ePhase II and III metrics include only samples correctly classified in Phase I. fPhase III accuracy
counts “No Color Match” as correct for incorrect colorant predictions, but incorrect when true colorants are correctly predicted.
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study are also used in our database. On the other hand,
Holman and Kurouski probed the effects of photodegradation
of hair dyes over time and found that all hair dyes could be
differentiated with over 90% sensitivity over a 10-week period.
Of the four hair dyes tested in that study, three appear in this
library (D1, D7, and D14) (Figure 8). Hair dyes that were
exclusively used in the other studies were given ESIDs, as can
be found in Table S9.
Using the DyedHairModules pipeline, we found that models

trained on internal spectra generalized reasonably well to
external data sets, though performance varied across phases
(Table 9). In the Higgins and Kurouski data set, Phase I
accuracy remained stable at 71.4%, demonstrating the
robustness of the oxidative vs nonoxidative classification across
different AuNR batches and preparation methods. Phase II
performance was lower (62.9%), with frequent partial or
incorrect mixture predictions, although samples such as D7
and D23 still showed high colorant precision. Phase III
accuracy reached 66.7%, reflecting its dependence on Phase II
fidelity; incorrect Phase II predictions typically defaulted to
“No Color Match”, an appropriate conservative outcome.
When colorants were correctly identified, perceptual color was
reliably assigned (e.g., D7, D9, and D23), though misclassi-
fications such as the reversed D10 and D14 highlight the need
for standardized AuNR protocols and suggest that classifying
color within ranges may improve interpretability. Overall, these
results underscore the pipeline’s stability in Phase I, its
sensitivity to spectral fidelity in Phase II, and the cascading
impact on Phase III outcomes.
As detailed in Table 10, spectra from Holman and Kurouski

further tested DyeSPY’s resilience under photodegradation
conditions. For dyes D1 and D14, which remained chemically
stable over the first 7 weeks, Phases I and II predictions stayed
consistent (100 and 78.6% accuracy, respectively), though
Phase III again struggled to resolve colors due to subtle shifts
in spectral features (23.8% accuracy). Interestingly, for D7,
Phase II predictions became increasingly incongruent with
time, shifting from correct predictions (Week 0) to more
unrelated dye combinations. This may suggest that prolonged
UV exposure can chemically transform dye residues into forms
that mimic different colorant signatures in the Raman space.
Despite these shifts, Phase I classification remained robust
across all weeks (100%), supporting the use of this initial phase
as a reliable decision point.
Table S12 further underscores the limits of spectral

generalizability under extreme degradation conditions (weeks
8−10). For clarity, Holman and Kurouski stated that SER
signal of dyes was visually unrecognizable by week 8.13 So,
unsurprisingly, in all cases, Phase II accuracy dropped
substantially, with many dyes falsely predicted as E+TT or
FX, and Phase III predominantly failing to return correct
colors. This collapse in specificity is consistent with the visual
fading and broadening of SER bands seen in that study and
emphasizes the importance of the spectral quality and dye
stability in forensic classification contexts. Interestingly, D14
returned to highly accurate Phases I and II predictions at
weeks 9 and 10. This observation supports that dye
degradation is not uniformly progressive and may depend on
the unique photochemical behavior of individual colorants.45,46

Although Phase II oxidative modeling underperformed
relative to the nonoxidative classifier in overall accuracy,
subset recall remained high across both validation studies. This
indicates that DyeSPY often identifies a meaningful portion of

the true dye mixture even when full matches are not achieved.
A reclassification strategy that accounts for partial overlap may,
therefore, be more appropriate for complex oxidative
formulations. For instance, in sample D7, the model correctly
predicted all five colorants (D+E+AA+FF+PP), while in
sample D17, three of five predictions overlapped with the
true mixture, still providing useful evidentiary value. These
findings suggest that subset recall offers a more informative
metric than exact-match accuracy and that forensic inter-
pretation should prioritize component overlap when evaluating
oxidative dye predictions.
External validation with dyes not represented in the DyeSPY

training library (e.g., HC Blue No. 15, Basic Blue 124,
tetraaminopyrimidine sulfate, and various Disperse or HC
series dyes; Tables S10−S12) showed that Phase I remained
robust, achieving 91.7% accuracy and correctly identifying the
oxidative state in 11 of 12 dyes. By contrast, Phase II
performance was lower (9.0% accuracy, 54.5% subset recall),
largely due to substitutions of unrepresented colorants with
structurally or spectrally analogous compounds. For example,
HC Blue No. 15 was misclassified as HC Blue 2 (AX), while
HC Red No. 3 (BX) and Basic Violet 2 (IX) were often
predicted as GX or FX, reflecting shared chromophore
structures and Raman features. These systematic substitutions
suggest that DyeSPY attempts to anchor unfamiliar spectra to
the closest available analogues within its spectral memory, a
behavior consistent with its supervised learning strategy.
These findings underscore both the current boundaries and

the promise of DyeSPY. Even without direct spectral matches,
the model can infer related chemical structures and return
partially correct or chemically relevant predictions. Impor-
tantly, these results offer a roadmap for expanding the
database: future additions should prioritize frequently sub-
stituted or spectrally ambiguous colorants identified during
external testing as well the addition of more colorants.
Through this adaptive refinement, DyeSPY can evolve into a
more comprehensive forensic resource while maintaining the
cautious, evidence-driven integrity essential to its application.
Altogether, the cross-study validation demonstrates that

DyeSPY’s performance is robust under moderate interstudy
variability, particularly in Phase I, and to a lesser extent Phase
II, when dye degradation or significant signal distortion is more
minimal. However, the system becomes less reliable when the
input data diverge too greatly from the training distribution,
suggesting that the variability in AuNR synthesis contributes to
occasional misclassifications. These results highlight the value
of incorporating diverse training spectra, including degraded
and variably prepared samples, into future model iterations,
ensuring broader applicability for real-world forensic scenarios.
Nevertheless, DyeSPY remains a strong first-generation
forensic tool capable of triaging unknown samples, identifying
likely dye pathways, and excluding incorrect color matches
with high confidence.

3.8. Limitations. While DyeSPY demonstrates strong
accuracy and transferability, several limitations remain. The
binary classification of oxidative versus nonoxidative dyes may
oversimplify chemical diversity, especially in mislabeled or
degraded products that blur these categories. Likewise, the
modular architecture depends on Phase I routing; although
misclassifications were rare and usually led to inconclusive
outputs, they still constrain end-to-end flexibility. Coverage is
further limited by the current reference library of 60 dyes,
which is a small fraction of the thousands available
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commercially. Although the system often mapped unfamiliar
dyes to close structural analogs or defaulted to “No Color
Match”, broader library expansion will be necessary for
comprehensive forensic utility.
Additional constraints include potential bias in the oxidative

classifier, which was trained on a finite set of authentic
formulations, and subjectivity in Phase III perceptual color
assignments, which may be affected by lighting, hair porosity,
or pigmentation. Finally, the pipeline assumes consistent
preprocessing, nanoparticle enhancement, and instrument
stability; although cross-study validation confirmed resilience,
extreme variability could erode the performance.
Overall, these limitations represent areas for refinement

rather than fundamental barriers. The modular design of
DyeSPY allows for independent upgrading of each component
(i.e., database expansion, routing logic, classifiers, and color
metrics), ensuring adaptability as new data and forensic needs
emerge.

4. CONCLUSIONS
The findings of this work demonstrate that SERS, when
coupled with machine learning, can transform the forensic
analysis of hair dyes from a largely descriptive practice into a
chemically precise and interpretable framework. By resolving
dye formulations at the colorant level and linking them to
perceptual outcomes, DyeSPY provides investigators with
information that extends beyond simple color observation,
offering insights into identity, chronology, and potential
toxicological risks. Importantly, this approach challenges
conventional reliance on bulk or morphological methods by
emphasizing molecular fidelity and reproducibility, attributes
that are critical for courtroom admissibility. Looking forward,
the broader significance of this platform lies in its ability to
adapt to the variability inherent in real forensic samples,
thereby setting the foundation for a standardized, scientifically
rigorous tool in forensic hair analysis.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.5c05023.

Information on colorants used in this study, as well as
details of machine learning models with corresponding
hyperparameter grids and Python implementation
libraries; reaction chemistry; CSNNC-mediated predic-
tion; hair dye products; mean SER spectra; and
experimental details (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Dmitry Kurouski − Department of Biochemistry and
Biophysics and Interdisciplinary Faculty of Toxicology, Texas
A&M University, College Station, Texas 77843, United
States; orcid.org/0000-0002-6040-4213;
Email: dkurouski@tamu.edu

Authors
Aidan P. Holman − Department of Biochemistry and
Biophysics and Interdisciplinary Faculty of Toxicology, Texas
A&M University, College Station, Texas 77843, United
States

Avery Maalouf − Department of Biochemistry and Biophysics,
Texas A&M University, College Station, Texas 77843,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.analchem.5c05023

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
The authors would like to extend gratitude to Stephano
Mongue for his assistance with sample preparation, as well as
Peter Marcouillier for his invaluable feedback on API direction.
This project was supported by Award No. 2020-90663-TX-
DU, awarded by the National Institute of Justice, Office of
Justice Programs, U.S. Department of Justice. We also
acknowledge TAMU Materials Characterization Facility.

■ REFERENCES
(1) Warshaw, E. M.; Schlarbaum, J. P.; Silverberg, J. I.; DeKoven, J.
G.; Fransway, A. F.; Taylor, J. S.; Maibach, H. I.; Fowler, J. F.;
Atwater, A. R.; Reeder, M. J.; Zug, K. A.; Belsito, D. V.; Sasseville, D.;
DeLeo, V. A.; Pratt, M. D. J. Am. Acad. Dermatol. 2021, 85 (6), 1446−
1455.
(2) IARC. Vol. 99: Some Aromatic Amines, Organic Dyes, and Related
Exposures; International Agency for Research on Cancer: IARC
Monographs on the Evaluation of Carcinogenic Risks to Humans,
2010.
(3) Patel, D.; Narayana, S.; Krishnaswamy, B. International Journal of
Trichology 2013, 5 (3), 140−143.
(4) Bisbing, R. E. Forensic Science Handbook, Volume I 2020, 151−
200.
(5) Gaudette, B. D. Journal of Forensic Sciences 1978, 23 (4), 758−
763.
(6) Groves, E.; Palenik, S.; Palenik, C. S. Journal of AOAC
International 2018, 101 (5), 1385−1396.
(7) Wiggins, K.; Palmer, R.; Hutchinson, W.; Drummond, P. Science

& Justice 2007, 47 (1), 9−18.
(8) Hochleitner, B.; Desnica, V.; Mantler, M.; Schreiner, M.
Spectrochimica Acta Part B: Atomic Spectroscopy 2003, 58 (4), 641−
649.
(9) Palenik, C. S.; Palenik, S.; Herb, J.; Groves, E. Fundamentals of
forensic pigment identification by Raman microspectroscopy: a practical
identification guide and spectral library for forensic science laboratories;
Microtrace, LLC: Elgin, IL (report sponsored by National Institute of
Justice) 2011; p 572.
(10) Barrett, J. A.; Siegel, J. A.; Goodpaster, J. V. Journal of Forensic
Sciences 2011, 56 (1), 95−101.
(11) Nie, S.; Emory, S. R. science 1997, 275 (5303), 1102−1106.
(12) Moskovits, M. J. Chem. Phys. 1978, 69 (9), 4159−4161.
(13) Holman, A.; Kurouski, D. Sci. Rep. 2023, 13 (1), 2168.
(14) Holman, A. P.; Peterson, M.; Linhart, E.; Kurouski, D. Sci. Rep.

2024, 14 (1), 6469.
(15) Holman, A. P.; Kurouski, D. Journal of Forensic Sciences 2023,
68, 2163−2168.
(16) Juarez, I.; Kurouski, D. Journal of Forensic Sciences 2023, 68 (1),
113−118.
(17) Juarez, I.; Kurouski, D. Analytical Methods 2023, 15, 4996−
5001.
(18) Holman, A. P.; Kurouski, D. Rev. Anal. Chem. 2024, 43 (1),
20230079.
(19) Corbett, J. F. Dyes Pigm. 1999, 41 (1−2), 127−136.
(20) Ates, G.; Doktorova, T. Y.; Pauwels, M.; Rogiers, V.Mutagenesis

2014, 29 (2), 115−121.
(21) FDA. Hair Dyes. Food and Drug Administration. 2024. https://
www.fda.gov/cosmetics/cosmetic-products/hair-dyes#:~:text=
c o n t a i n s % 2 0 c a r b o n % 2 0 a t o m s . -

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.5c05023
Anal. Chem. XXXX, XXX, XXX−XXX

P

https://pubs.acs.org/doi/10.1021/acs.analchem.5c05023?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.analchem.5c05023/suppl_file/ac5c05023_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Dmitry+Kurouski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-6040-4213
mailto:dkurouski@tamu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Aidan+P.+Holman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Avery+Maalouf"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.5c05023?ref=pdf
https://doi.org/10.1016/j.jaad.2020.10.003
https://doi.org/10.1016/j.jaad.2020.10.003
https://doi.org/10.4103/0974-7753.125610
https://doi.org/10.4103/0974-7753.125610
https://doi.org/10.4324/9781315119939-3
https://doi.org/10.4324/9781315119939-3
https://doi.org/10.1520/JFS10734J
https://doi.org/10.1520/JFS10734J
https://doi.org/10.5740/jaoacint.18-0052
https://doi.org/10.5740/jaoacint.18-0052
https://doi.org/10.1016/j.scijus.2006.11.001
https://doi.org/10.1016/j.scijus.2006.11.001
https://doi.org/10.1016/S0584-8547(02)00280-X
https://doi.org/10.1016/S0584-8547(02)00280-X
https://doi.org/10.1111/j.1556-4029.2010.01567.x
https://doi.org/10.1111/j.1556-4029.2010.01567.x
https://doi.org/10.1126/science.275.5303.1102
https://doi.org/10.1063/1.437095
https://doi.org/10.1038/s41598-023-29221-8
https://doi.org/10.1038/s41598-024-57147-2
https://doi.org/10.1038/s41598-024-57147-2
https://doi.org/10.1111/1556-4029.15347
https://doi.org/10.1111/1556-4029.15347
https://doi.org/10.1111/1556-4029.15165
https://doi.org/10.1111/1556-4029.15165
https://doi.org/10.1039/D3AY01219K
https://doi.org/10.1039/D3AY01219K
https://doi.org/10.1515/revac-2023-0079
https://doi.org/10.1515/revac-2023-0079
https://doi.org/10.1016/S0143-7208(98)00075-8
https://doi.org/10.1093/mutage/get068
https://doi.org/10.1093/mutage/get068
https://www.fda.gov/cosmetics/cosmetic-products/hair-dyes#:%7E:text=contains%20carbon%20atoms.-,What%20the%20Law%20Says%20About%20Coal%2Dtar%20Hair%20Dyes,do%20not%20need%20FDA%20approval
https://www.fda.gov/cosmetics/cosmetic-products/hair-dyes#:%7E:text=contains%20carbon%20atoms.-,What%20the%20Law%20Says%20About%20Coal%2Dtar%20Hair%20Dyes,do%20not%20need%20FDA%20approval
https://www.fda.gov/cosmetics/cosmetic-products/hair-dyes#:%7E:text=contains%20carbon%20atoms.-,What%20the%20Law%20Says%20About%20Coal%2Dtar%20Hair%20Dyes,do%20not%20need%20FDA%20approval
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c05023?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


,What%20the%20Law%20Says%20About%20Coal%2Dtar%20
Hair%20Dyes,do%20not%20need%20FDA%20approval (accessed
March 2025).
(22) FDA. Lead Acetate in “Progressive” Hair Dye Products. Food and
Drug Administration. 2022. https://www.fda.gov/cosmetics/cosmetic-
products/lead-acetate-progressive-hair-dye-products (accessed March
2025).
(23) EC. List of 181 substances banned for use in hair dye products;
European Commission, 2015.
(24) EC. List of 114 substances allowed for restricted use in hair dye
products; European Commission, 2017.
(25) Cunningham, T. Tracey Cunningham’s True Color: The Essential
Hair Color Handbook; Abrams, 2021.
(26) Burrows, N. D.; Harvey, S.; Idesis, F. A.; Murphy, C. J.
Langmuir 2017, 33 (8), 1891−1907.
(27) Lussier, F.; Thibault, V.; Charron, B.; Wallace, G. Q.; Masson,
J.-F. TrAC Trends in Analytical Chemistry 2020, 124, No. 115796.
(28) Ju, Y.; Neumann, O.; Bajomo, M.; Zhao, Y.; Nordlander, P.;
Halas, N. J.; Patel, A. ACS Nano 2023, 17 (21), 21251−21261.
(29) Holman, A. P.; Rodriguez, A.; Elsaigh, R.; Elsaigh, R.; Wilson,
J.; Cohran, M. H.; Kurouski, D. J. Biophotonics 2025 ,
No. e202400575.
(30) Kurouski, D.; Van Duyne, R. P. Analytical chemistry 2015, 87
(5), 2901−2906.
(31) Badawi, H. M.; Förner, W.; Ali, S. A. Spectrochimica Acta Part
A: Molecular and Biomolecular Spectroscopy 2013, 112, 388−396.
(32) Edwards, H. Spectra-structure correlations in Raman spectros-
copy. In Handbook of vibrational spectroscopy; Wiley, 2006; vol 3, pp
1838−1871.
(33) Socrates, G. Infrared and Raman characteristic group frequencies:
tables and charts; John Wiley & Sons, 2004.
(34) Hastie, T.; Tibshirani, R.; Friedman, J. The elements of statistical
learning; Springer Series in Statistics: New-York, 2009.
(35) Kuhn, M.; Johnson, K. Applied predictive modeling; Springer,
2013.
(36) Murch, R. S.; Presley, L. A.; Mount, M. G. Forensic Sci.
Commun. 1999, 1 (1), 1.
(37) Emery, K. J.; Webster, M. A. Current opinion in behavioral
sciences 2019, 30, 28−33.
(38) Shah, M. S. M. B.; Saleem, S.; Zulqarnain, R. J. Digital Forensics,
Secur. Law 2017, 12 (2), 12.
(39) Roy, A.; Healey, C. P.; Larm, N. E.; Ishtaweera, P.; Roca, M.;
Baker, G. A. ACS Nanoscience Au 2024, 4 (3), 176−193.
(40) Liz-Marzán, L. M.; Kagan, C. R.; Millstone, J. E. ACS
Publications 2020, 14, 6359−6361.
(41) Holman, A. P.; Kurouski, D. ACS omega 2023, 8, 20675−
20683.
(42) Higgins, S.; Kurouski, D. Talanta 2023, 251, No. 123762.
(43) Higgins, S.; Kurouski, D. Sci. Rep. 2023, 13 (1), 7063.
(44) Steczkowski, M.; Kurouski, D. Journal of Forensic Sciences 2023,
68 (3), 807−814.
(45) Allen, N. Polymer degradation and stability 1994, 44 (3), 357−
374.
(46) Guy, O. J. Fundamental experimental and theoretical studies on
the lightfastness of azo dyes; Swansea University: U.K., 2001.

Analytical Chemistry pubs.acs.org/ac Article

https://doi.org/10.1021/acs.analchem.5c05023
Anal. Chem. XXXX, XXX, XXX−XXX

Q

https://www.fda.gov/cosmetics/cosmetic-products/hair-dyes#:%7E:text=contains%20carbon%20atoms.-,What%20the%20Law%20Says%20About%20Coal%2Dtar%20Hair%20Dyes,do%20not%20need%20FDA%20approval
https://www.fda.gov/cosmetics/cosmetic-products/hair-dyes#:%7E:text=contains%20carbon%20atoms.-,What%20the%20Law%20Says%20About%20Coal%2Dtar%20Hair%20Dyes,do%20not%20need%20FDA%20approval
https://www.fda.gov/cosmetics/cosmetic-products/lead-acetate-progressive-hair-dye-products
https://www.fda.gov/cosmetics/cosmetic-products/lead-acetate-progressive-hair-dye-products
https://doi.org/10.1021/acs.langmuir.6b03606?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.trac.2019.115796
https://doi.org/10.1021/acsnano.3c05510?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/jbio.202400575
https://doi.org/10.1002/jbio.202400575
https://doi.org/10.1021/ac504405u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac504405u?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.saa.2013.04.075
https://doi.org/10.1016/j.saa.2013.04.075
https://doi.org/10.1016/j.cobeha.2019.05.002
https://doi.org/10.1016/j.cobeha.2019.05.002
https://doi.org/10.15394/jdfsl.2017.1478
https://doi.org/10.15394/jdfsl.2017.1478
https://doi.org/10.1021/acsnanoscienceau.3c00056?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c04709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsnano.0c04709?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c01241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acsomega.3c01241?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.talanta.2022.123762
https://doi.org/10.1038/s41598-023-34398-z
https://doi.org/10.1111/1556-4029.15235
https://doi.org/10.1111/1556-4029.15235
https://doi.org/10.1016/0141-3910(94)90095-7
https://doi.org/10.1016/0141-3910(94)90095-7
pubs.acs.org/ac?ref=pdf
https://doi.org/10.1021/acs.analchem.5c05023?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.cas.org/solutions/biofinder-discovery-platform?utm_campaign=GLO_ACD_STH_BDP_AWS&utm_medium=DSP_CAS_PAD&utm_source=Publication_ACSPubs

