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ABSTRACT
Contamination of farmland with heavy metals (HMs), particularly arsenic, cadmium, and lead, poses significant risks to human 
health and food security, especially through HM bioaccumulation in rice (Oryza Sativa). Current methods of detection for HMs, 
such as ICP-MS, provide accurate measurements but are destructive and labor-intensive, limiting their feasibility for widespread 
agricultural use. In this study, we investigated the potential of Raman spectroscopy (RS) as a nondestructive, cost-effective alter-
native for the detection of HM stress and thereby uptake in rice. Using a dose–response experimental design, we examined the 
sensitivity of RS for detecting varying levels of arsenic, cadmium, and lead-induced stress. Our analyses revealed several dose-
dependent changes in Raman peaks associated with carotenoid and phenylpropanoid abundance. We found these changes were 
specific to each HM, reflecting the activation of distinct stress-response mechanisms. We also performed ICP-MS of harvested 
rice tissue, allowing us to build Raman-based calibration curves for predicting the HM concentration within rice. Lastly, we built 
a machine-learning algorithm that could interpret the Raman spectra to diagnose the specific type of HM toxicity with an aver-
age of 84.5% accuracy after only 1 week of HM stress. These findings highlight the promise of RS as a valuable tool for real-time, 
nondestructive monitoring of HM contamination in rice crops. Notably, the dose–response experimental design demonstrated 
RS's ability to detect HM stress levels that aligned with typical environmental contamination.

1   |   Introduction

As industrialization continues, contamination of farmland by 
toxic heavy metals (HMs) poses a significant threat to food secu-
rity, especially in staple crops like rice. These soil-borne HMs in-
clude arsenic, lead, mercury, cadmium, cesium, chromium, and 
nickel. Some HMs, notably arsenic and chromium, occur at high 
concentrations naturally in the environment, particularly in 
serpentine soils and areas with volcanic activity (Abdul Rashid 
et al. 2023; Yang et al. 2022). However, many of these pollutants 
result from current and past agricultural practices such as the 

application of organometallic pesticides and fertilizers (Rashid 
et al. 2023). Anthropogenic sources due to industrial and urban 
activities also contribute additional HMs (Adnan et al. 2022).

As such, studies of farmland and groundwater across the 
United States, Europe, and China consistently report elevated 
HM concentrations (Ren et  al.  2022; Tóth et  al.  2016; Zhou 
et al. 2020). Once introduced into the environment, HMs can 
readily bioaccumulate, especially within rice, which can accu-
mulate arsenic at concentrations 10× to 20× higher than other 
grains (Liao et  al.  2018; Nunes and Otero  2017). Given rice's 
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role as a staple crop for half of the global population, a high 
level of HM exposure through daily rice consumption poses a 
serious public health risk (Angon et  al.  2024). In major rice-
producing countries like China, India, and some Southeast 
Asian countries, contaminated rice contains HM levels deemed 
concerning to human health (Kumar et al. 2024; Mu et al. 2020; 
Ngo et  al.  2024). Among these contaminants, arsenic, cad-
mium, and lead pose the greatest threat to human health, 
being ranked first, seventh, and second, respectively, on the 
ATSDR's substance priority list (Agency for Toxic Substances 
and Disease Registry  2017). Furthermore, the International 
Agency for Research on Cancer (IARC) classifies arsenic and 
cadmium as Group 1 carcinogens, while lead is a Group 2A 
probable carcinogen. All three are linked to cardiovascular 
and neurotoxic effects (Arruebarrena et al. 2023; Balali-Mood 
et al. 2021; International Agency for Research on Cancer, n.d.; 
Solenkova et al. 2014). With over 520 million metric tons of rice 
being consumed annually, reducing HM contamination in rice 
is essential.

While long-term solutions focus on mitigating HM uptake 
through bioengineering and soil remediation, current efforts 
focus on detecting and quantifying HM content in rice grains 
to reduce exposure risks. This is enabled by conventional an-
alytical techniques such as inductively coupled plasma-mass 
spectrometry (ICP-MS), atomic absorption spectroscopy 
(AAS), and ion chromatography (IC) (Wang et  al.  2022). Of 
these, ICP-MS is the gold standard for detection of HMs within 
plant tissues due to its super low limit of detection and abil-
ity to simultaneously measure multiple analytes (Sader and 
Ryan 2020). However, its high cost, technical complexity, and 
requirement for destructive sample preparation limit accessi-
bility for routine monitoring. Lower cost methods like AAS 
and IC also have limitations and still require destroying the 
plant tissue before analysis.

Recently, the Kurouski laboratory demonstrated that Raman 
spectroscopy (RS), a nondestructive analytical technique based 
on the inelastic scattering of light, could be used to detect arse-
nic exposure in rice by monitoring biochemical stress responses 
(Juárez et  al.  2024). Specifically, arsenic-induced oxidative 
stress led to carotenoid depletion and phenylpropanoid accu-
mulation. Relative levels of these two classes of biomolecules 
could then be tracked using RS (Dou et al. 2021). It should be 
noted that Kurouski group also showed that RS could be used 
for the detection of a wide range of biotic and abiotic stresses in 
plants, including drought, nitrogen deficiency, and fundal and 
bacterial diseases (Farber et al. 2021; Farber et al. 2021; Sanchez 
et  al.  2020; Sanchez et  al.  2019; Sanchez et  al.  2020; Morey 
et  al.  2021). In all cases, the detection was based on unique 
changes in the chemical profile of plants that were detected 
using RS.

When Raman spectral data were correlated with ICP-MS re-
sults, we found that RS could serve as a viable alternative for 
arsenic detection. However, this work used a high arsenic con-
centration of 50 μM, yet the World Health Organization's guide-
line for arsenic in drinking water is just 10 μg/L. This is the 
standard used by countries like the United States and China, 
while some developing nations permit up to 50 μg/L (Frisbie and 
Mitchell 2022; Uddin and Huda 2011). Arsenic is also rarely the 

sole contaminant in rice fields, with cadmium and lead posing 
greater risks in some regions. These metals often share simi-
lar toxicity mechanisms and trigger overlapping biochemical 
stress responses in plants, potentially confounding RS detection 
(Ghori et al. 2019; Huang et al. 2022). Therefore, two key ques-
tions remained: (1) How sensitive is RS to different levels of arse-
nic uptake, and (2) how specific is RS to arsenic stress compared 
to other HM exposures?

To address these gaps, we investigated the sensitivity and spec-
ificity of RS for diagnosing arsenic, cadmium, and lead uptake 
at three concentrations using a dose–response experimental 
design. Spectral data were analyzed using ANOVA and partial 
least squares discriminant analysis (PLS-DA) to diagnose HM-
induced stress. HM accumulation was quantified using ICP-MS, 
and Raman intensity at several peaks was correlated with metal 
content to produce calibration curves.

2   |   Methods/Materials

2.1   |   Experimental Design

For the experiment, rice was cultivated in hydroponics using 
plastic containers and floated Styrofoam panels. Each panel had 
circular openings with plastic mesh underneath to support the 
roots of individual seedlings. The seeds were germinated be-
fore introduction to the system, with one seed per opening. The 
rice was nourished with a Yoshida nutrient solution, which in-
cluded both macronutrients (114.30 mg/L NH4NO3, 50.40 mg/L 
NaH2PO4·2H2O, 89.30 mg/L K2SO4, 108.25 mg/L CaCl2 and 
405 mg/L MgSO4·7H2O) and micronutrients (1.875 mg/L 
MnCl2·4H2O, 0.093 mg/L (NH4)6Mo7O24·4H2O, 1.09 mg/L 
H3BO3, 0.038 mg/L CuSO4·5H2O, 9.62 mg/L FeCl3·6H2O, 
14.88 mg/L C6H8O7·H2O and 0.043 mg/L ZnSO4·7H2O). The 
water was changed out every 3 days, with nutrients added af-
terwards. The system was maintained at a pH of 5. The growth 
conditions were kept constant using a controlled chamber with 
a day/night cycle set to 12 h/12 h, humidity set to 55%, and day/
night temperatures set to 29°C/26°C. After 2 weeks of growth, 
HM treatments were introduced. Plants were assigned to one 
of 16 groups, accounting for the combinations of experimental 
conditions and the control (Figure 1). HMs were administered 
concurrently with the Yoshida solution.

FIGURE 1    |    Schematic of experimental groups used in the HM dose–
response experiment.
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2.2   |   Instrumentation

An Agilent Resolve hand-held Raman spectrophotometer was 
used to collect spectra from the rice leaves at 830 nm. Acquisition 
time was 1 s at a laser power of 495 mW; 24 Raman spectra were 
acquired for each group of plants once a week, stopping at Week 6. 
Photographs of the crops were also collected at these time points. 
All spectra were baselined and normalized at the 1440-cm−1 peak.

Nitric acid digestions were performed to quantify the amount of 
heavy metal present in the rice tissue, following the procedure 
in Juárez et al. (2024). ICP-MS was then run using a Quadrupole 
Inductively Coupled Plasma-Mass Spectrometer (PerkinElmer 
NexION 300D) equipped with a Cetac ASX-520 autosampler. 
Argon was used as the carrier gas. Rhodium was used as an 
internal standard. The calibration curve for ICP-MS was gen-
erated using 1 g/L of certified reference material arsenic in 2% 
nitric acid. Dilutions of this external standard were made for 
1, 25, 50, 100, and 200 ng/mL. All external standards and rice 
sample dilutions were made with ultrapure water.

2.3   |   Chemometrics

Microsoft Excel, R (programming language), and the PLS_tool-
box (Eigenvector Research Inc.) were used in MATLAB to per-
form all statistical analyses and construct figures. Data were 
downloaded from the instrument as CSV (comma separated 
values) files and then imported into each software. ANOVA was 
performed in R for all peaks with visual change. 2D correlation 
spectra were generated from the averaged Raman spectra for 
each heavy metal. 3D surface plots were built to show the trend 
across time. PLS-DA models were built for a binary comparison 

of each experimental group, with two to six latent variables used 
for each model. All data were checked for normality.

3   |   Results

The Raman spectra at Week 6 revealed many changes in peaks 
corresponding to different biomolecules (Figure  2). The most 
prominent spectral changes occurred at carotenoid (1155, 1185, 
1218 cm−1), phenylpropanoid (1632 cm−1), nitrate (1046 cm−1), 
and amino acid (747 cm−1) peaks, along with smaller alter-
ations in other peaks, including the other amino acid (915 cm−1) 
peak, carbohydrates (847 cm−1), cellulose (1115 cm−1), lipids 
(1066 cm−1), and additional carotenoid peaks (1001, 1525 cm−1) 
(Table  S1). The largest decreases were observed at 1185 and 
1218 cm−1 in the As and Cd groups, with an increase also at 
1632 cm−1 caused by As. Bar graphs of the peak intensities 
confirmed that the change in carotenoid contents was dose de-
pendent for the As and Cd groups, while the increase in phenyl-
propanoid content was dose dependent for the As group. Pb had 
no consistent dose-dependent trend, and the peak intensities for 
PbHigh were closer to the control than PbLow (Figure 3).

The Kruskal–Wallis test revealed significant intensity changes 
occurred at 747-, 1001-, 1155-, 1185-, 1218-, 1525-, 1601-, and 
1632-cm−1 peaks. CdHigh and AsHigh groups overall had 
the largest amount of significant peak changes relative to 
other experimental conditions (Figure  S1). CdHigh spectra 
showed distinct decreases in the 1001, 1185 and 1218 cm−1 
carotenoid peaks and the 747 cm−1 amino acid peak relative 
to the PbHigh group and control. Similarly, AsHigh spectra 
also decreased at 1185 and 1218 cm−1, but also showed signif-
icant increases at 1601 and 1632 cm−1 relative to the PbHigh 

FIGURE 2    |    (A) Raman spectra collected from rice leaves of the experimental groups AsHigh, CdHigh, PbHigh, and the control at W6. Asterisk 
indicates the 1440-cm−1 peak, used for normalization. (B) Zoomed in spectra of carotenoid peaks, and (C) zoomed in spectra of phenylpropanoid 
peaks.
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group and control. Finally, AsHigh and CdHigh spectra could 
be distinguished by significant differences in intensity at the 
1001-, 1155-, and 1525-cm−1 carotenoid peaks. It should be 
noted that 1601- and 1632-cm−1 peaks in all observed spec-
tra were not symmetric, which indicates that a large group of 
aromatic compounds change in concentration in the case of 
HM toxicities. Additional mass-spectroscopy analysis of such 
plants is necessary to fully understand the biochemical origin 
of HW-induced toxicities in rice.

After statistical analysis, we performed 2D-COS to extract spec-
tral information from dosage-dependent and time-dependent 
perturbations (Figure  4). In the synchronous spectra of all 
three HMs, strong autopeaks (positive correlation peaks along 
the diagonal) at 1155 and 1525 cm−1 indicated these peaks un-
dergo significant intensity alterations in response to HM stress. 
Smaller autopeaks were noted at the 1325 cm−1 aliphatic peak 
across all HM groups and at the 1632-cm−1 peak in the As and 
Pb synchronous spectra. Additionally, two positive cross-peaks 
at 1001–1525 cm−1 and 1155–1525 cm−1 were present in all syn-
chronous spectra, indicating that intensity changes at these 
peaks occurred in the same direction.

The asynchronous spectra provided insights into the sequence 
of these linked spectral changes. Notably, the 1155-cm−1 peak 
changed before the 1525-cm−1 peak under As and Pb stress, 
whereas cadmium stress induced the opposite trend. In solely 
the As asynchronous spectrum, strong negative cross-peaks at 
1001–1155 and 1001–1525 cm−1 suggested that the 1001-cm−1 
peak decreases after the other two carotenoid peaks have de-
creased. Furthermore, peak splitting was observed at 1001 cm−1 

for all three metals and at 1525 cm−1 for As and Pb, indicating a 
preferential degradation of certain carotenoid species.

To confirm that spectral findings reflected HM uptake, we per-
formed ICP-MS analysis of rice leaves harvested from Week 6. 
All experimental groups, except PbLow, had higher HM uptake 
than the control, with uptake increasing with higher HM dos-
ages (Figure  5). Pb uptake exceeded As uptake despite an ab-
sence of observable symptoms or characteristic spectral changes. 
The amount of Cd taken up was similar between CdHigh and 
CdMed, while AsHigh and PbHigh had substantially elevated 
concentrations.

Correlating ICP-MS values with Raman intensities enabled us 
to generate calibration curves for HM uptake. We generated four 
calibration curves for As and Cd using intensities from three ca-
rotenoid peaks (1155, 1185, 1218 cm−1) and one phenylpropanoid 
peak (1632 cm−1) (Figure 6). Most curves had high r2 values, the 
strongest correlations being 0.8567 for Cd at the 1155-cm−1 peak 
and 0.8805 for As at the 1218-cm−1 peak. The 1632-cm−1 peak 
also strongly correlated with As uptake but was the weakest 
correlation for Cd uptake. These results suggest that the 1155-
cm−1 peak is the best reference for assessing Cd uptake, while 
the 1218- and 1632-cm−1 peaks together best assess As uptake. 
Notably, HM uptake followed a logarithmic rather than a linear 
relationship with intensity, contrary to our previous findings 
(Juárez et  al.  2024). No Raman peaks correlated well with Pb 
uptake.

By instead correlating Raman intensities with the HM dosage 
in water, we generated dose–response curves. By then adding 

FIGURE 3    |    Bar plots of intensity at W6 at (A) 1155-, (B) 1218-, (C) 1185-, and (D) 1632-cm−1 peaks. *p ≤ 0.05, **p ≤ 0.01, and ***p ≤ 0.001. Green 
stars indicate significance against the control, while red, blue, and purple stars indicate significance versus the AsHigh, CdHigh, and PbHigh groups, 
respectively. Black stars indicate significance within the same HM condition.
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a temporal axis, we could generate 3D surface plots to visual-
ize changes in peak intensity over time (Figure S2). By the first 
week of stress, the 1155- and 1185-cm−1 peaks during Cd stress 
and the 1218-cm−1 peak during As stress showed sharp declines 
in intensity with increasing dosage. In all three peaks, this trend 
persisted until week three, when lower-dosage groups showed 
a partial recovery, suggesting an acclimation to HM levels. 
However, at Week 6, intensity continued to decline in AsHigh, 
AsMed, CdHigh, and CdMed groups. At the 1632-cm−1 peak, As 
caused no major intensity changes until week three, when the 
AsHigh plants exhibited a sharp increase in phenylpropanoid 
content. By Week 6, a clear stress response was evident at the 
1632-cm−1 peak across all As dosages.

Lastly, we built a PLS-DA model to evaluate the reliability of RS 
for diagnosing HM stress. Models were trained using Raman 
spectral data from Week 1 and Week 6 of HM stress. Binary 
PLS-DA models, built comparing each group against the con-
trol and all other spectra within the same HM regardless of con-
centration, yielded strong classification performance (Table 1). 

Average prediction accuracies for As, Cd, and Pb were 84.5% at 
Week 1 and 82.3% at Week 6. While As and Pb accuracy were 
consistent at both time points, Cd had a higher true positive rate 
(TPR) at Week 1.

4   |   Discussion

Across 6 weeks of HM stress, As1 rice developed substantially 
fewer tillers, while the As2 rice only had a slight reduction in til-
lers. The number of tillers appeared unaffected in the Cd1 rice; 
however, both the Cd1 and As1 rice had more dead leaves than 
other groups. Additionally, the younger leaves in the As1 rice 
had yellow-green coloration, indicating mild chlorosis. All other 
experimental groups showed no visual symptoms (Figure  S3). 
Also, despite the high HM levels noted for both arsenic and lead 
groups, HM levels decrease in plant tissue as they are translo-
cated upwards, suggesting any grains grown from these rice 
plants would have lower concentrations of HMs than the leaves 
(Abedin et al. 2002).

FIGURE 4    |    Two-dimensional correlation spectroscopy (2D-COS) analysis of the relationship between HM dosage and time. Plots (A, C, E) are the 
synchronous spectra for As, Cd, and Pb, respectively. Plots (B, D, F) are the asynchronous spectra for As, Cd, and Pb, respectively.
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Cd stress in rice could be characterized by tracking changes in 
multiple carotenoid peaks (1001, 1155, 1185, 1525 cm−1), as shown 
by both the average Raman spectra and results of Kruskal–Wallis. 
The 2D-COS spectrum of Cd revealed that changes at the 1525-
cm−1 peak precede those at 1155 cm−1 and that the mechanism 
may be linked. The 1525-cm−1 peak corresponds to C=C stretch-
ing, while the 1155-cm−1 peak corresponds to asymmetric ring 
breathing. Under oxidative stress, carotenoids such as β-carotene 

undergo oxidative cleavage into short-chain volatiles, retaining 
the ring but losing double bonds (Havaux 2014; Ramel et al. 2012). 
This likely explains the earlier decrease in 1525 cm−1 intensity, 
which preceded degradation of the ring end-group. 3D surface 
plots showed that intensities at 1155 and 1185 cm−1 naturally de-
creased as a function of rice age, regardless of cadmium dosage. 
The 1185-cm−1 plot exhibited a sharp dip in week two, followed 
by partial recovery, suggesting a transient stress acclimation. 

FIGURE 5    |    ICP-MS results by experimental condition, indicating the average concentration of HM in rice leave.

FIGURE 6    |    Calibration curves correlating Raman intensity with HM concentration at (A) 1155-, (B) 1218-, (C) 1185-, and (D) 1632-cm−1 peaks.
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This illustrates that carotenoid peaks can however change in-
dependently and must be assessed collectively to evaluate plant 
health. Both peaks correlated strongly with Cd uptake at Week 6.

As-induced changes differed from Cd-induced changes in two 
major ways. Notably, there was no significant decrease at the 
1155-cm−1 peak under high As levels, and there was a strong 
logarithmic increase in phenylpropanoids at 1632 cm−1. While 
the synchronous spectra for As and Cd were largely similar, the 
small autopeak at 1632 cm−1 was unique to arsenic. The asyn-
chronous spectrum of As revealed a reversal in the order of 
carotenoid peak changes compared to Cd, with the 1155-cm−1 
peak instead changing before the 1525-cm−1 peak. This further 
pointed to distinct stress response mechanisms between the two 
metals. Nevertheless, the changes at 1155 and 1525 cm−1 under 
arsenic stress were less consistent and not statistically significant 
at Week 6. The peaks at 1185 and 1218 cm−1 showed significant 
decreases with increasing As and Cd dosages. The 3D surface 
plot of the 1218-cm−1 peak showed a sharp decrease in intensity 
at Week 2, followed by partial recovery in most groups, suggest-
ing a transient stress acclimation similar to that observed under 
Cd stress at the 1185-cm−1 peak. The 1218-cm−1 peak also ap-
peared as a small autopeak in the As synchronous map but not 
in Cd's, reinforcing a distinct carotenoid degradation pathway. 
The nature of the specific mechanism that could cause certain 

changes in carotenoid structure due to As stress but not Cd 
stress is unknown; however, differences in tested concentration 
between As and Cd may contribute to the observed divergence. 
In line with prior findings, phenylpropanoids at 1632 cm−1 re-
mained the most consistent marker of As uptake. The 3D surface 
plot shows that phenylpropanoid accumulation in response to As 
stress is a delayed reaction in rice, initially limited to the AsHigh 
group until Week 6, when all As-treated groups began produc-
ing phenylpropanoids at levels exceeding the control. Altogether, 
1218- and 1632-cm−1 peaks showed the strongest correlation with 
As uptake.

Pb-induced spectral changes were highly erratic and lacked dose-
dependent trends. The absence of a clear relationship between in-
tensity and dosage possibly suggests a more complex response to 
lead toxicity. As such, no reliable calibration curves could be gen-
erated linking Raman intensities to lead accumulation. Despite 
Pb-induced spectral changes appearing less distinct, the PLS-DA 
models readily differentiated Pb stress from other HMs-induced 
stresses. This suggests that these subtle spectral alterations are suf-
ficient for RS-based machine learning models to reliably differen-
tiate between the different HM stress patterns. Similar prediction 
rates across all metals further indicated that the lower statistical 
significance in Pb-related spectral changes do not necessarily re-
flect a lack of a detectable physiological response.

5   |   Conclusion

Overall, these findings support the implementation of RS as a 
diagnostic method for arsenic, cadmium, and lead toxicity at 
a wide range of concentrations. The spectral changes linked 
to carotenoids were found to be particularly useful in assess-
ing cadmium uptake, as were the carotenoid and phenylpro-
panoid peaks in assessing arsenic uptake. We found that the 
three HMs induced differential changes in carotenoid content, 
and that RS can utilize these differences in physiological mark-
ers to diagnose arsenic stress against other HMs. This work 
offers a much greater understanding of the limitations of RS 
and demonstrates its utility in detecting HM stress at con-
centrations relevant to typical environmental contamination. 
Looking forward, future studies should assess these findings 
within field conditions to further validate its implementation 
as a tool toward digital farming. Specifically, elucidation of 
the specificity of RS in general and observed changes in the 
concentrations of carotenoids and phenylpropanoids should 
be validated using a large number of HW and other similar 
chemicals.
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TABLE 1    |    PLS-DA true positive rates for each experimental group 
at W1 and W6.

Binary TPR MCC

Week 1 6 1 6

As1 0.896 0.892 0.776 0.775

As2 0.824 0.808 0.656 0.569

As3 0.840 0.783 0.680 0.644

As4 0.840 0.896 0.690 0.756

As5 0.783 0.840 0.585 0.683

As avg. 0.853 0.846 0.707 0.697

Cd1 0.912 0.766 0.817 0.595

Cd2 0.832 0.720 0.641 0.407

Cd3 0.784 0.725 0.602 0.446

Cd4 0.816 0.767 0.649 0.470

Cd5 0.904 0.808 0.785 0.594

Cd avg. 0.850 0.772 0.700 0.535

Pb1 0.864 0.783 0.713 0.594

Pb2 0.880 0.826 0.732 0.641

Pb3 0.808 0.942 0.657 0.818

Pb4 0.768 0.826 0.619 0.707

Pb5 0.824 0.950 0.585 0.917

Pb avg. 0.832 0.850 0.668 0.702

Control 0.933 0.859 0.859 0.757

Overall model avg. 0.845 0.823 0.692 0.645
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