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ABSTRACT

Over the past decade, several swine influenza variants, including HIN1 and HIN2, have been periodically detected in swine.
Raman spectroscopy (RS) offers a non-destructive, label-free, and rapid method for detecting pathogens by analyzing molecu-
lar vibrations to capture biochemical changes in samples. In this study, we examined blood serum from swine under different
conditions: healthy, unvaccinated, or vaccinated against porcine reproductive and respiratory syndrome, and vaccinated swine

infected with HIN1 and HIN2 variants of swine influenza. Our findings demonstrate that RS, when combined with machine

learning algorithms such as partial least squares discriminant analysis and eXtreme gradient boosting discriminant analysis, can

achieve accuracy rates of up to 97.8% in identifying the infection status and specific variant within porcine blood serum. This re-
search highlights RS as a useful, novel tool for the detection of influenza variants in swine, significantly enhancing surveillance

efforts by identifying animal health threats.

1 | Introduction

Influenza viruses are classified into subtypes based on the anti-
genicity of the surface viral glycoproteins, hemagglutinin (HA)
and neuraminidase (NA). In swine, three endemic subtypes
predominate: swH1N1, swH1IN2, and swH3N2, which have
roughly equal detections over the last few years [1]. HA and NA
are important determinants of virus infectivity, transmissibil-
ity, pathogenicity, and host specificity and evolve seasonally
due to antigenic drift [2]. Current monitoring and diagnostic
techniques, such as polymerase chain reaction (PCR)-based
assays and serological assays, are resource-intensive and time-
consuming. For example, detection using cell cultures can
take 2-7days for sensitivities between 82% and 100%, whereas

PCR-based assays like real-time reverse transcription PCR (rRT-
PCR) take 15min to several hours with sensitivities between
66% and 100% (3, 4]. This raises the question of whether more
rapid, highly accurate methods could be employed in situations
that demand a swift response.

Raman spectroscopy (RS) is a technique that analyzes inelas-
tically scattered light from illuminated samples and has re-
cently demonstrated potential in identifying pathogens and
their various strains by examining overall biochemical changes
in the tissues they inhabit [5-10]. For instance, Khan et al. [8]
investigated biochemical alterations related to dengue infec-
tions by comparing spectra from 40 infected individuals and
25 healthy controls. They identified distinct Raman peaks that
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differentiated between infected and uninfected samples. Later
that year, the same team used support vector machine (SVM)
analysis to achieve an average accuracy of approximately 85%
in distinguishing 31 dengue-positive serum samples from 53
negative samples [6]. Senger et al. [11] applied RS to differen-
tiate between healthy individuals and those with Lyme dis-
ease (LD) using urine samples, achieving nearly 89% accuracy
through principal component discriminant analysis (PCDA).
Additionally, Goff et al. [7] used RS to analyze blood samples for
identifying healthy individuals versus those with three different
strains of LD. They achieved 96% accuracy with mouse blood
and 88% accuracy with human blood using a prebuilt partial
least squares discriminant analysis (PLS-DA) model from an-
other similar study by Farber et al. [5]. All of these studies use
RS as a non-destructive, label-free, and high-throughput tool for
the analysis of infection status in tissues. Giuseppe et al. [12]
demonstrated that RS was capable of differentiating between
healthy and Leishmania-infected dogs, whereas Vyas et al. [13]
showed that changes in the chemical composition of saliva could
be used to diagnose Sjogren’s disease. It should be noted that
RS-based diagnostics of disease is not limited to animals and
humans. Farber et al. [14, 15] found that RS could be used to
detect viral diseases in wheat and roses, while Yetru et al. [16]
demonstrated experimental evidence of RS-based diagnostics of
Abutilon mosaic virus in Abutilon sp. All of these studies use
RS as a non-destructive, label-free, and high-throughput tool for
the analysis of infection status in plants, animals, and humans.

It should be noted that unlike regular RS, which picks up the
vibrations of molecules, the Raman signal can be boosted by
adding plasmonic materials that create strong electromagnetic
fields. This makes the signals from molecules near the sur-
face much stronger and easier to detect. This type of analysis
is called surface-enhanced Raman spectroscopy (SERS, also
called surface-enhanced Raman scattering). Gracie et al. [17]
used silver nanoparticles (AgNPs) in a colloidal solution with a
DNA aptamer attached that would bind to the fragments of bac-
terial DNA after A-exonuclease digestion. They found highly dis-
tinct spectra between Streptococcus pneumoniae, Haemophilus
influenzae, and Neisseria meningitidis with detection limits in
the pico-molar range. Wang et al. [18] used a silicon wafer chip
coated with AgNPs and modified by 4-mercaptophenylboronic
acid to capture and analyze antibiotic bacteria (Escherichia coli
and Staphylococcus aureus) within human blood. However,
studies like these require more sophisticated sample prepara-
tion, namely when preparing the plasmonic material.

This study aims to evaluate whether conventional RS can dis-
tinguish between unvaccinated healthy pigs and vaccinated
(against porcine reproductive and respiratory syndrome or
PRRS) pigs that are either healthy or have been inoculated with
low or high doses of HIN1 or HIN2 influenza variants. PRRS
virus affects porcine respiratory and reproductive systems [19].
Therefore, 80% of pigs receive PRRS vaccination [20-23]. We
utilize PLS-DA and eXtreme gradient boosting discriminant
analysis (XGBDA) to analyze spectral data and compare the ef-
fectiveness of these machine learning models in making accu-
rate predictions. The impact of this research lies in its potential
to advance diagnostic capabilities for influenza in swine, offer-
ing a more efficient and accurate method for identifying differ-
ent infection statuses and vaccine responses.

2 | Materials and Methods
2.1 | Pig Treatment and Inoculation

Three-day-old piglets were vaccinated for Influenza. After
2weeks, the piglets were boosted with a second dose of influ-
enza vaccine. A day later, pigs were weaned and delivered to
the research barn. Pigs were housed by litter in four rooms.
All pigs were vaccinated for PRRS 14 days post weaning. (This
vaccination timeline was designed to reflect standard practices
in medium-to-large swine herds, where over 80% population re-
ceives PRRS vaccination [20-23]). Seventeen days post-weaning,
the pigs were rehoused into their appropriate treatment room.
Four rooms were utilized, with one being a negative control
room and the other three representing three different treat-
ments: HIN1 flu (A/sw/Ind/A02429505/2019) high dose, HIN1
flu (A/sw/Ind/A02429505/2019) low dose, and HIN2 (A/sw/IL/
A01475495/2014). The pigs receiving challenge were challenged
21 days post weaning.

2.2 | Blood Extraction

Approximately 1 mL of swine blood was collected via venipunc-
ture from the jugular fossa. Once withdrawn, blood was shipped
(kept frozen) to Texas A&M University where vials were imme-
diately placed and kept at —80°C prior to measurements.

2.3 | Raman Spectroscopy

Raman spectra were collected using a TE-2000 U Nikon inverted
confocal microscope, equipped with a 20X objective. A solid-
state laser generated 785nm light, while power through each
sample was kept at 1.8 mW. Scattered light was collected using
the same magnification and directed using a 50/50 beam split-
ter into an IsoPlane-320 spectrometer (Princeton Instruments)
equipped with a 600groove/mm grating. Prior to entering the
spectrometer, elastically scattered photons were blocked by a
long-pass filter (Semrock, LP03-785RS-25). Inelastically scat-
tered photons were collected using a PIX-400BR CCD (Princeton
Instruments).

Samples were prepared by wrapping a glass slide in one layer
of foil and depositing 50 uL of blood serum into a 1-in. X% in.
rectangle onto the foil. After the blood was applied to the slide,
a 30-min waiting period was observed before the analysis com-
menced to slightly dry the blood for an optimal signal. Thirty
spectra (s, 3180 total) from each sample (n, 106 total) were col-
lected at 30s acquisitions (one accumulation per acquisition)
using 8 mW of laser power. Throughout the project, four differ-
ent individuals collected spectra to minimize operator bias and
variability, ensuring reproducibility.

2.4 | Data Analysis

Allspectrawere trimmed from 367 cm~! to 1800 cm ™!, background-
subtracted, smoothed (second order) using a Savitzky-Golay filter,
baseline-corrected (eighth order) using automatic weighted least
squares, and area-normalized before analysis using MATLAB (as
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displayed). Chemometric analysis of acquired spectra was done in
MATLAB equipped with PLS_Toolbox 9.0 (Eigenvector Research
Inc., Manson, WA). Supporting Information Figure S1 demon-
strates the effects of these processing steps on the raw spectra of
one sample. If sequential preprocessing was applied, it included
first derivative filtering (n=2, fl=15pt.) and mean centering.
Calibration (training), cross-validation (internal validation), and
validation (external validation) models were created for each che-
mometric algorithm. Validation was performed by partitioning
(using Kennard-Stone algorithm) the data so that 70% was used for
calibration and cross-validation and the remaining 30% was used
for testing. Venetian blinds cross-validation was employed using
10 data splits and one sample per blind so that the left-out data was
always 10%.

Samples were categorized into the following groups: “Control”
for vaccinated, uninfected pigs (n=27); “UnVaxd” for unvacci-
nated, uninfected pigs (n =16); “LowInf” for vaccinated pigs in-
fected with a lower dose of the HI1N1 variant (n = 23); “HighInf”
for vaccinated pigs infected with a higher dose of the HIN1
variant (n=20); and “SecInf” for vaccinated pigs infected with
the H1N2 variant (n =20). Outliers, identified as samples’ spec-
tra with data points exceeding two standard deviations within
the relative class set, were manually removed (71 spectra were
removed this way). Spectra from each sample were averaged by
combining every five spectra, reducing the outlier-free total of
3109 to 623 spectra before analysis. Accuracy was calculated by
averaging the true positive rate (sensitivity) and true negative
rate (specificity), as done for imbalanced data sets.

In PLS-DA, the number of latent variables (LVs) for each model
was determined based on the following criteria: (1) the opti-
mal root mean square error (RMSE) values in both calibration
(RMSEC) and cross-validation (RMSECV), (2) the inclusion of
variables with estimated signal-to-noise ratios (SNRs) greater
than 3, and (3) the formation of non-random class sets using 1000
permutations with the random ¢-test. The optimization results

for the final models can be found in Supporting Information
Figure S2. The calibration, cross-validation, and validation con-
fusion matrices for PLS-DA with and without preprocessing can
be found in Supporting Information Table S1.

In XGBDA, the models were generated automatically without
the need for variable selection (built-in hyperparameter tun-
ing). The optimization results for each model are presented
in Supporting Information Figure S3. The calibration, cross-
validation, and validation confusion matrices for XGBDA
with and without preprocessing can be found in Supporting
Information Table S2.

PLS-DA and XGBDA were selected due to their fundamentally
different approaches to distinguishing features between classes.
PLS-DA is a linear model, meaning it identifies patterns based
on linear relationships between spectral features. In contrast,
XGBDA is a non-linear model, capable of capturing not only lin-
ear dependencies but also more complex relationships, includ-
ing sublinear and super-linear interactions between features. By
using both models, we can determine whether class separation
is primarily driven by simple linear differences in spectral peaks
or if a combination of linear and non-linear patterns provides a
more accurate distinction.

3 | Results and Discussion

By examining the Raman spectra of blood samples, we observed
subtle differences in the biochemical profiles across various
groups, Figure 1 and Supporting Information Figure S4. The
observed similarity across spectra is expected, as both variants
of the same virus primarily affect the respiratory tract, lead-
ing to a similar immune response. Nevertheless, the Raman
spectra from all groups indicate variable responses from heme
compounds, aromatic amino acids, nucleic acids, and other un-
identified proteins and carbohydrates.
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FIGURE1 | Averaged Raman spectra of all groups within the fingerprint region for blood. Highlighted Raman band ranges are assigned based on

origination from heme compounds (red), aromatic amino and nucleic acids (blue), or other miscellaneous molecules (purple).
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Further statistical analysis using the Kruskal-Wallis test for anal-
ysis of variance (ANOVA) indicated that no single Raman band
displayed significant mean relative intensities across all classes.
However, when comparing the spectra of uninfected (Control
and UnVaxd) to infected (LowInf, HighInf, and SecInf) groups,
ANOVA identified 18 Raman bands with significant relative inten-
sity differences at 420, 570, 679, 757, 831, 859, 902, 941, 1130, 1227,
1326, 1343, 1567, 1586, 1607, 1623, 1642, and 1672cm™! (specific
vibrational assignments can be found in Table 1) (p-values for each
ANOVA test are detailed in Supporting Information Table S3).

Notably, eight of these Raman bands originate from heme com-
pounds, and their relative intensities were significantly lower
in the spectra of infected pigs. This suggests that infection with
HINI1 or HIN2 in swine leads to specific biochemical changes
that can be detected and quantified using RS, particularly in
the heme-related compounds. The reduced intensity in heme-
related bands may indicate a disruption in oxygen transport or
other heme-related functions in infected pigs. Zou et al. [28]
reported that most down-regulated genes following HIN1 in-
fection were involved in oxygen transport and blood-cytokine
production. Additionally, the HA protein in HIN1 and HIN2
binds to sialic acid receptors on the surface of host cells, such
as red blood cells (RBCs), facilitating viral entry, infection, and

TABLE1 | Significant Raman bands and their assignments.

Raman band (cm™) Assignment

420 Fe-O, bending (heme) [24]
570 Fe-0, stretching (heme) [24, 25]
679 Pyrrole symmetric

bending (heme) [24, 25]

upon cell death, loss of hemoglobin [29, 30]. This could explain
the lower relative intensity in heme-related peaks from infected
blood spectra compared to healthy. At the same time, influ-
enza infections can induce systemic inflammatory responses,
oxidative stress, and immune-mediated hemolysis, which may
contribute to altered RBC integrity and hemoglobin metabo-
lism [31].

Furthermore, in 11 of the 18 significant Raman bands, infected
groups exhibited lower relative intensities compared to unin-
fected groups. Of the seven remaining bands where infected
groups showed higher relative intensities, four were associated
with unknown proteins and carbohydrates. Additionally, the in-
crease in certain protein and carbohydrate-related bands could
reflect metabolic alterations induced by the infection. This is
in agreement with the plethora of studies that show HIN1 and
HIN?2 infection significantly lower appetite, body weight, and
induce other nutrient metabolic changes [28, 32-35]. These find-
ings show that RS can be a sensitive tool in evaluating the bio-
chemical changes involved in infections within blood.

Despite the absence of a single Raman band with consistently sig-
nificant relative intensity across all five classes, machine learning
algorithms can still leverage the subtle spectral variations across
multiple bands to differentiate between classes. We started by
using PLS-DA without preprocessing to determine if the spectra,
with only the necessary amount of filtering and normalization, are
variable enough to differentiate between each other. Upon valida-
tion, the model generated an accuracy of 87% with 79.3% sensitivity
and 94.7% specificity, Table 2A. When preprocessing was applied,
the model generated an accuracy of 90.2% with 84.4% sensitivity
and 96% specificity, Table 2B. These results suggest that RS cou-
pled with PLS-DA can identify between all classes with generally
high accuracy, especially when first derivative filtering and mean
centering are applied before analysis.

We also chose to include an additional machine learning model
called XGBDA. Unlike PLS-DA, which relies on linear assump-
tions, XGBDA uses decision trees to capture both linear and non-
linear relationships in the data, combining multiple trees to create
a robust and flexible model. Additionally, XGBDA utilizes hyper-
parameter tuning, selecting the best values for a model's parame-
ters to achieve optimal performance, whereas in PLS-DA, models
are hand-selected by the user (albeit with existing guidelines).

We initially used XGBDA without preprocessing to replicate the
approach taken with PLS-DA and achieved an accuracy of 97.3%,
with 95.7% sensitivity and 98.8% specificity, Table 3A. After
applying preprocessing, the accuracy improved to 97.8%, with
96.6% sensitivity and 99% specificity, Table 3B. Importantly, pre-
processing did not compromise sensitivity or specificity using
both XGBDA and PLS-DA. These results indicate that XGBDA,
when coupled with RS and enhanced by first derivative filter-
ing and mean centering, can accurately distinguish between all
classes and outperforms PLS-DA, suggesting it could be a supe-
rior model for this type of analysis.

Variations in sample (blood) composition and spectral noise are
known to impact model bias-variance tradeoff and thus overall
robustness [36]. Regarding inter-sample variability, we analyzed
a diverse set of samples categorized into five distinct groups

757 Pyrrole ring breathing
(heme) [24, 25]

831 Tyrosine [26]

859 Tyrosine [26]

902 Tyrosine [26]

941 C-C stretching [26]

1130 C-C, Pyrrole ring

stretching (heme) [8]

1227 C-H, Pyrrole ring bending
(heme) [24, 25]

1326 Adenine [27]

1343 Tryptophan [27]

1567 C=C, Pyrrole ring

stretching (heme) [24, 25]

1586 C-C, Pyrrole ring stretching
(heme) [8, 24]

1607 Phenylalanine [26]

1623 Phenylalanine [26]

1642 C=C, Amide I[8]

1672 0-C=0, Amide I [8]
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TABLE 2 | Validation results for with and without preprocessing PLS-DA models.

(A) Without preprocessing (LVs =13)

(B) With preprocessing (LVs =13)

TPR/ TNR/ Balanced TPR/ TNR/ Balanced
Sensitivity, % Specificity, % accuracy Sensitivity, % Specificity, % accuracy
Control (s =50) 80 93.382 86.691 78 95.588 86.794
LowInf (s=49) 69.388 93.431 81.41 83.673 94.161 88.917
HighlInf (s=23) 56.522 96.933 76.728 69.565 98.773 84.169
SecInf (s=24) 95.833 98.765 97.299 95.833 98.765 97.299
UnVaxd (s =40) 95 91.096 93.048 95 92.466 93.733
Total 79.349 94.721 87.035 84.414 95.951 90.182
TABLE 3 | Validation results for with and without preprocessing XGBDA models.
(A) Without preprocessing (B) With preprocessing
TPR/ TNR/ Balanced TPR/ TNR/ Balanced
Sensitivity, % Specificity, % accuracy Sensitivity, % Specificity, % accuracy
Control (s =50) 100 96.324 98.162 100 95.588 97.794
LowlInf (s=49) 89.796 97.810 93.803 89.796 100 94.898
HighlInf (s=23) 91.304 100 95.652 95.652 99.387 97.519
SecInf (s =24) 100 100 100 100 100 100
UnVaxd (s =40) 97.5 100 98.75 97.5 100 98.75
Total 95.72 98.827 97.273 96.59 98.995 97.792

TABLE 4 | Comparison between turnaround time, throughput,
and sensitivity of our method against current gold standards for the
detection of swHIN1 and swHIN?2.

Method RS & XGBDA RT-PCR Viral culture
Turnaround Undefined 0.25-5h 1-10days
time

Throughput 0.4 0.31-6.2 Undefined
(samples/min)

Sensitivity (%) 96.6 66-100 82-100

(Control, UnVaxd, LowInf, HighInf, and SecInf) to ensure that
variations in blood composition due to infection status and vac-
cination were well represented. The Kennard-Stone algorithm
was used to partition the data, ensuring that 70% was used for
calibration and cross-validation, while 30% was reserved for ex-
ternal validation, enhancing the generalizability of the model.
Furthermore, to minimize the effects of spectral noise, rigorous
preprocessing steps were applied, including Savitzky-Golay
smoothing, background subtraction, baseline correction (eighth
order automatic weighted least squares), and area normaliza-
tion. Further preprocessing, such as first derivative filtering,
was used in chemometric analysis to enhance signal clarity and
reduce variability caused by noise. Regarding model robustness,
we employed two fundamentally different modeling approaches:
PLS-DA (a linear model) and XGBDA (a non-linear model).

This allowed us to assess whether classification was driven pri-
marily by linear relationships in spectral features or required
more complex non-linear interactions. PLS-DA optimization
was based on RMSE values, SNR thresholds, and non-random
class set formation through 1000 permutations, while XGBDA
relied on automated hyperparameter tuning. The consistency of
validation results across both models (Supporting Information
Tables S1 and S2) suggests that our approach effectively miti-
gates the influence of spectral noise and blood composition
variability, supporting the robustness of our method across dif-
ferent populations. Thus, while inherent biological and spectral
variability can impact classification models, the preprocessing
strategies, cross-validation techniques, and complementary
modeling approaches implemented in this study were designed
to minimize these effects and improve model reliability across
diverse sample sets.

Beyond that, one might wonder how the performance and prac-
ticality of our method compares to conventional techniques,
particularly in terms of sensitivity, throughput, and turnaround
time (Table 4). The leading methods for identifying swHIN1
and swHIN2 are RT-PCR and viral cultures [4]. According to
the U.S. Center for Disease Control and Prevention (CDC),
available, and U.S. Food and Drug Administration (FDA)-
authorized, RT-PCR assays can take between 15min to 5h to
complete and have sensitivities between 66% and 100% [4].
The CDC also notes that RT-PCR assays can process up to 93
samples per turnaround time (using a 96-well plate), resulting
in throughput speeds of approximately 0.31-6.2 samples per
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minute [37]. In contrast, viral cultures have sensitivities be-
tween 82% and 100% for these influenza strains, with analysis
times ranging from 1 to 10days (with Shell-vial tissue cultures
being the fastest, taking 1-3days) [3, 38]. The throughput for
viral cultures is harder to quantify, as it depends on available
resources such as culture media and petri dishes, as well as
analyst time. However, it is generally understood that viral
cultures are not used for rapid testing [4]. Our method, on the
other hand, requires five spectra per sample (based on post-
acquire averaging) with 30s between each spectrum, giving us
a throughput of 0.4 samples per minute. This places our method
in close proximity to the fastest RT-PCR processing speeds.
Table 4 further emphasizes that validation of our method is
necessary to assess realistic turnaround times and refine the
technique before it can be widely adopted.

4 | Conclusions

The aim of this study was to evaluate the effectiveness of RS in
distinguishing between various infection statuses and vaccine
responses in swine, and to compare the performance of PLS-DA
and XGBDA. Our results demonstrated that RS effectively iden-
tified distinct biochemical changes associated with HIN1 and
HIN2 infections, as well as distinguished between vaccinated
and unvaccinated healthy individuals. XGBDA, in particular,
significantly outperformed PLS-DA, achieving higher accuracy
and better performance metrics even without preprocessing.
Furthermore, the application of preprocessing techniques opti-
mized XGBDA's performance without compromising sensitivity
or specificity. These findings highlight the potential of combin-
ing RS with advanced machine learning methods to enhance di-
agnostic capabilities, offering a robust and precise approach for
identifying different influenza infection statuses in swine and
potentially in broader medical contexts.
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