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Abstract
Forensic entomology is crucial in medicolegal investigations, utilizing insects—primarily 
flies—to estimate a supplemental post-mortem interval based on their development at 
the (death) scene. This estimation can be influenced by extrinsic factors like temperature 
and humidity, as well as intrinsic factors such as species and sex. Previously, benchtop 
Fourier-transform infrared (FTIR) spectroscopy coupled with machine learning demon-
strated high accuracy in distinguishing the sex of third instar Cochliomyia macellaria lar-
vae. This study leverages benchtop- and handheld-based FTIR spectroscopy combined 
with machine learning models—Partial Least Squares Discriminant Analysis (PLSDA), 
eXtreme Gradient Boosting trees Discriminant Analysis (XGBDA), and Artificial Neural 
Networks Discriminant Analysis (ANNDA)—to differentiate between male and female 
Chrysomya rufifacies larvae, commonly found on human remains. Significant vibrational 
differences were detected in the mid-infrared spectra of third instar Ch. rufifacies larvae, 
with a majority of peaks showing a higher abundance of proteins, lipids, and hydrocar-
bons in male larvae. PLSDA and ANNDA models developed using benchtop FTIR data 
achieved high external validation accuracies of approximately 90% and 94.5%, respec-
tively, when tested with handheld FTIR data. This nondestructive approach offers the 
potential to refine supplemental post-mortem interval estimations significantly, enhanc-
ing the accuracy of forensic analyses of entomological evidence.
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Key points

•	 Infrared spectroscopy enables differentiation between male and female Chrysomya rufifacies 
larvae.

•	 Differentiation is based on differences in proteins, lipids, and hydrocarbon vibrational bands.
•	 Chemometric analysis enabled over 90% accurate identification of the sex of Ch. rufifacies 

larvae.
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1  |  INTRODUC TION

Forensic entomology is the study of insects and other arthro-
pods in legal contexts, primarily to assist in determining the time 
of death during medicolegal investigations. This field leverages 
the life cycles of insects that colonize decomposing remains to 
estimate their time of colonization (TOC), which serves as a sup-
plemental post-mortem interval under specific assumptions  [1]. 
Flies, being among the first insects to colonize human remains, 
play a central role in forensic analyses [2]. The development of 
these insects is influenced by external factors such as tempera-
ture and humidity and internal factors such as species and sex [3, 
4]. Identifying these factors is critical for adjusting estimations, 
but determining the sex of fly larvae has posed significant chal-
lenges [5, 6].

Although limited, evidence increasingly suggests that sex plays a 
significant role in fly development, influencing age predictions and 
impacting forensic analyses. For instance, Noblesse et al. (2022) ob-
served that male Lucilia sericata flies developed approximately 12 h 
faster than females, highlighting sex-specific differences in devel-
opmental timelines [7]. Similarly, Pimsler et  al. (2021) investigated 
sexually dimorphic patterns of gene expression in Chrysomya rufifa-
cies (Macquart) throughout its development [8]. This study revealed 
male-biased gene upregulation during larval stages, faster develop-
ment—approximately 9 h quicker than females at 30°C—and larger 
body sizes in males.

Additional studies on Calliphorid flies, including Chrysomya 
megacephala and Cochliomyia macellaria, suggest similar trends 
where males develop faster under controlled conditions due to 
genetic and environmental factors, such as temperature and nu-
trient availability [9, 10]. These differences in development rates 
not only impact forensic age estimation but also emphasize the 
need for sex determination in immature stages to refine predic-
tive models. Despite these insights, gaps remain in understanding 
how widespread these developmental differences are among fo-
rensically significant fly species. Moreover, the statistical effect 
size of these differences in forensic contexts has yet to be fully 
quantified.

One species in particular, Ch. rufifacies, is distinctive among 
Calliphoridae species due to its unique combination of developmen-
tal traits and ecological behaviors. Unlike many other flies, Ch. ru-
fifacies exhibits a monogenic sex-determination system, controlled 
by a dominant maternal-effect gene (F′) [11]. This system results 
in single-sex clutches. Furthermore, these flies are known for their 
predatory larval behavior, preying on other larvae at the same food 
source [12]. This behavior reduces competition and can delay or 
eliminate colonization timelines, which is vital in forensic entomol-
ogy when assessing post-mortem intervals (PMIs) [13]. For instance, 
Sanford (2014) observed Ch. rufifacies completely dominating the 
infestation of one individual, relegating other species, such as L. exi-
mia, to the area surrounding the body [13, 14].

Sex-specific developmental rates and behavioral differences in 
dispersal or predation could significantly influence TOC estimates 
and PMI calculations. Understanding these factors can improve fo-
rensic models and enhance the accuracy of medicolegal investiga-
tions. Determining the sex of immature stages, therefore, becomes 
crucial for addressing these questions and improving the accuracy of 
forensic entomological models.

Traditionally, adult flies are sexed using large-scale morphologi-
cal keys, which lack methods for distinguishing the sexes of larvae 
due to the absence of visible sexual dimorphism at this stage [15]. 
Molecular techniques, such as the PCR-based methods developed 
by Jonika et al. (2020), have been used to determine the sex of adult 
and larval blowflies, including Ch. rufifacies and Co. macellaria [16]. 
However, these methods are destructive, rendering larval evidence 
unsuitable for further testing, and RNA can be unstable, potentially 
limiting its forensic application (though Smith (2024) reports that it 
is possible to obtain transformer RNA from ethanol stored samples 
of Co. macellaria). Similarly, Picard et  al. (2012) employed flow cy-
tometry to determine the sex of third instar Lucilia sericata larvae 
by genome size, a technique that also requires destructive sampling 
[17, 18].

Infrared (IR) spectroscopy offers a promising alternative as a 
noninvasive, nondestructive analytical tool capable of identifying 
and quantifying molecular structures through their unique vibra-
tional signatures. Specifically, IR detects the unique vibrational 
modes of molecular bonds, which absorb infrared radiation when 
there is a change in dipole moment during vibration. These changes 
occur most prominently in polar functional groups, such as carbonyl 
(C=O), amine (N-H), and methyl/methylene (C-H) stretches, com-
monly found in proteins, lipids, and hydrocarbons. In adult insects, 
including flies, males and females commonly exhibit distinct cutic-
ular hydrocarbon (CHC) profiles that are linked to mating behavior, 
desiccation resistance, and sexual communication [19, 20]. This tech-
nique has gained traction in forensic entomology for differentiating 
fly species, diets, ages, and sexes [21–26]. For instance, Barbosa 
et al. (2018) demonstrated that IR spectra could effectively distin-
guish between the sexes and species of adult flesh flies (Diptera: 
Sarcophagidae), highlighting its potential for forensic applications 
[24]. Previously, our group demonstrated that benchtop Fourier-
transform infrared (FTIR) spectroscopy, combined with machine 
learning analysis, could accurately predict the sex of Co. macellaria 
larvae with high accuracy [26]. The adaptability and high-throughput 
capabilities of IR spectroscopy make it an innovative method for ad-
vancing forensic investigations.

The current study investigates the use of FTIR spectroscopy for 
the highly accurate differentiation of male and female Ch. rufifacies 
larvae, a species commonly encountered at crime scenes throughout 
North America [27]. We utilize three machine learning models, Partial 
Least Squares Discriminant Analysis (PLSDA), eXtreme Gradient 
Boosting trees Discriminant Analysis (XGBDA), and Artificial Neural 
Networks Discriminant Analysis (ANNDA), to analyze and classify 
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    |  3HOLMAN et al.

IR spectra from the larvae based on sex. This approach has the po-
tential to greatly improve forensic investigations by offering a rapid, 
on-site, and nondestructive method for more accurately estimating 
supplemental post-mortem intervals.

2  |  MATERIAL S AND METHODS

2.1  |  Insect acquisition, rearing, and identification

Adult Ch. rufifacies were sourced from a laboratory colony at the 
Texas A&M University Forensic Laboratory for the Investigation of 
Entomological Science (FLIES Facility) in College Station, TX, USA. 
Colony maintenance followed the methods described in Rusch 
et  al. (2019) [28]. Flies were housed in 30 × 30 × 30 cm Bugdorm 
mesh cages (BioQuip, Rancho Dominguez, CA) in a temperature-
controlled room (~22°C, 50% relative humidity, and a photoperiod of 
14:10 [L:D] h). Water was provided in 200 mL glass mason jars with 
paper towel wicks secured by rubber bands, and the flies were fed 
ad libitum with a 2:1 diet of table sugar and powdered milk.

Four to 5 days after pupal emergence, adult flies were given 
beef blood meals every other day, totaling four meals over 8 days. 
Following the fourth blood meal, 25 individual female Ch. rufifacies 
were isolated into 50 mL conical centrifuge tubes, each provided 
with ~5 g of beef liver wrapped in a Kimwipe as an oviposition site. 
These females were left to oviposit over a 24-h period. Due to the 
species' monogenic sex-determination system, wherein individual 
females are genetically predisposed to produce only male or only 
female offspring, each clutch is expected to be unisexual. However, 
only a subset of the 25 isolated females produced egg clutches.

In Event 1, two egg clutches were successfully retrieved, each 
from a different female. These two clutches were treated as inde-
pendent, unisexual replicates. Fourteen hatchlings from clutch one 
and ten from clutch two were retained for analysis to balance the 
need for sufficient sample size with practical limitations on acqui-
sition time, while still allowing for assessment of inter-sample vari-
ability. The sex of each clutch was determined retrospectively: After 
larvae developed into adults, the sex of the emerging flies was as-
sessed based on eye morphology (holoptic males vs. dichoptic fe-
males), allowing us to confirm the sex identity of the original larval 
clutch. Clutch one yielded only females, and clutch two yielded only 
males.

A second experimental event, Event 2, was conducted to gen-
erate an additional batch of third instar larvae, aimed at expanding 
the model training dataset and assessing whether inter-generational 
variation in larval spectra influences model performance. In Event 2, 
the same procedure was applied to isolate new females and their egg 
clutches from a different generation of flies sourced from the same 
facility. Five clutches were obtained from five different females this 
way. Again, the total amount of eggs was reduced to 25 total, with 5 
larvae from each clutch. The sex of each clutch was again confirmed 
by allowing the remaining larvae to pupate and eclose into adults. 

Clutches one and three produced only males, while clutches two, 
four, and five produced only females.

2.2  |  Infrared spectroscopy

Five attenuated total reflectance (ATR)-corrected FTIR spectra 
were collected from the central region of each larva using either a 
Spectrum 100 IR spectrometer (PerkinElmer, Inc.) (benchtop) or 4300 
Handheld FTIR system (Agilent Technologies, Inc.). To accomplish this, 
each larva was positioned with its ventral midsection directly over 
the ATR crystal on the instrument stage. Notably, the handheld FTIR 
device includes a lightweight portable stage, allowing it to function 
comparably to a benchtop system. The metal anvil was then gently 
lowered onto the dorsal midsection of the larva to stabilize it and 
ensure optimal contact with the crystal, thereby maximizing infrared 
signal transmission. The positioning and analysis setup are illustrated 
in Figure 1.

During Event 1, 22 larvae were analyzed using both benchtop 
and handheld FTIR systems, except for two larvae that were ana-
lyzed only with handheld FTIR (22 larvae, 110 total spectra) but were 
unintentionally killed during handling before benchtop FTIR analysis 
(20 larvae, 100 total spectra). In Event 2, 23 larvae were analyzed 
exclusively with benchtop FTIR, generating 115 total spectra.

Raw data were processed using attenuated total reflectance 
(ATR) correction (using a diamond composed of Zn/Se crystals) and 
displayed in absorbance by PerkinElmer spectrum express software 
(for benchtop FTIR) or Agilent MicroLab FTIR software (for handheld 
FTIR). Each spectrum was acquired from 650 to 4000 wavenumbers 
(cm−1) by combining 4 cumulative scans with 4 cm−1 resolution on 
the benchtop instrument and 30 cumulative scans with 4 cm−1 res-
olution on the handheld instrument. The applied force was 6 N for 
the benchtop.

2.3  |  Data analysis

All spectra were first trimmed from 900 to 3000 cm−1 to remove 
visually noisy regions across spectra. The trimmed spectra were 
then baseline-corrected using automatic-weighted least squares 
(2nd order) and smoothed using a Savitzky–Golay filter (2nd order, 
fl = 15 pt.) before analysis using MATLAB (The MathWorks, Inc.). 
Normalization was not required for the spectra from either instru-
ment, as the laser power remains constant and immutable, and 
the system autonomously optimizes signal acquisition both before 
and during analysis. Additionally, a 1st derivative preprocessing 
(Savitzky–Golay) was applied in some instances to gauge model 
performance. Chemometric analysis of acquired spectra was done 
in MATLAB R2022b equipped with PLS_Toolbox  9.0 (Eigenvector 
Research, Inc.). Preprocessing of each model was done using the re-
quired mean centering and with or without 1st-derivative Savitzky–
Golay filtering (2nd order, fl = 15 pt.).
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4  |    HOLMAN et al.

Internal validation refers to each model's 10-fold cross-
validation. Briefly, this is done by dividing the dataset into 10 equally 
sized folds, training the model on 9 folds, testing it on the remaining 
fold, and repeating this process 10 times, with each fold serving as 
the test set once and averaging the results. External validation was 
done by testing each model, built on either Event 1 or Event 1 and 2 
benchtop data, with the handheld IR data. External validation results 
were reported for all models, unless otherwise specified. Accuracy 
was calculated by dividing the number of correctly predicted in-
stances by the total number of instances. Sample-level accuracy was 
calculated using a majority-vote rule where a sample is considered 
correctly predicted if more than 50% of its spectra were classified 
correctly, Tables S1–S18.

For the PLSDA model, the optimal number of latent variables was 
selected based on the lowest average classification error between 
the calibration and cross-validation phases, considering only the first 
10 latent variables to prevent overfitting. This selection process is il-
lustrated in Figures S1 and S2. The chosen PLSDA model utilizes the 
specified number of latent variables (LVs)—which represent groups 
of characteristic variances in the data between sexes—to calibrate 
(build) the model. We then applied a 10-fold cross-validation to test 
the model's classification ability across all data.

For the XGBDA model, the optimal configuration is automati-
cally determined by the algorithm, selecting the best combination 
of the number of trees (max_depth) and the learning rate (eta) based 
on performance metrics. These optimization results are shown in 

Figure  S3. We then applied a 10-fold cross-validation on the cali-
brated data.

For the ANNDA model, we chose a neural network architecture 
with two hidden layers, consisting of 20 and 10 nodes in the first and 
second layers, respectively. The architecture was selected to bal-
ance complexity and predictive accuracy while avoiding overfitting. 
The model was trained using a backpropagation algorithm with a 
fixed learning rate and activation functions optimized for classifica-
tion tasks. LVs were used to reduce dimensionality between classes 
and enhance feature extraction. We then applied a 10-fold cross-
validation to assess the model's performance.

Model performance was evaluated using several standard classi-
fication metrics. Accuracy represents the proportion of all correctly 
classified instances, while sensitivity (or recall) measures the mod-
el's ability to correctly identify true positives for each class (e.g., 
correctly classifying male or female larvae). The global F1 score is 
the harmonic means of precision and recall across all predictions, 
offering a balanced performance metric, especially for imbalanced 
datasets. Matthew's correlation coefficient (MCC) provides a more 
comprehensive assessment by incorporating true and false positives 
and negatives; it ranges from −1 (complete misclassification) to +1 
(perfect classification), with 0 indicating random prediction.

Finally, a Shapiro–Wilk test was performed in RStudio across 
all datasets and revealed that a majority of vibrational bands were 
not normally distributed. Thus, non-parametric tests for differ-
ences in medians across vibrational bands were employed. Pairwise 

F I G U R E  1  Position and analysis of larval samples per instrument.
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    |  5HOLMAN et al.

Wilcoxon rank-sum tests (with a Bonferroni correction) and the 
Manhattan plot were generated in RStudio, using the “wilcox. test” 
and “ggplot2” R libraries.

3  |  RESULTS AND DISCUSSION

An FTIR spectrum can be divided into two main regions: the analyti-
cal region (≥1600 cm−1) and the fingerprint region (<1600 cm−1). The 
analytical region is useful for identifying functional groups with well-
defined characteristic peaks, such as O-H (around 3200–3600 cm−1) 
and C-H (2850–3300 cm−1) stretching vibrations. By contrast, the 
fingerprint region contains more complex molecular vibrations that 
depend on the overall chemical structure of the sample. This region 
is highly specific to individual compounds, making it useful for dis-
tinguishing between similar molecules. As shown in Table 1, several 
peaks in this region can correspond to multiple molecular vibrations 
and different biomolecules, requiring careful interpretation based 
on the sample's composition.

During the first analysis event (Event 1), male and female third 
instar Ch. rufifacies larvae exhibited shared peaks at 1059, 1159, 
1237, 1312, 1340, 1400, 1450, 1539, and 1631 cm−1 in the finger-
print mid-IR region and at 2851 and 2920 cm−1 in the analytical 
mid-IR region (Figure 2A,D). These peaks are primarily attributed to 
the sclerotin protein (and amino acids), wax-lipid compositions, and 
other hydrocarbons of the larval cuticle (Table 1). During Event 2, 
slight shifts were observed in several vibrational bands, with both 
sexes sharing peaks at 1053, 1153, 1237, 1312, 1340, 1398, 1457, 
1541, 1631, 2851, and 2919 cm−1 (Figure 2B,E). When the spectra 
from both sexes were combined, the mutable peaks converged near 
the center of their ranges, resulting in shared peaks at 1055, 1153, 
1237, 1314, 1340, 1400, 1452, 1541, 1631, 2851, and 2920 cm−1 
(Figure  2C,F). The mean and standard deviations for all benchtop 
and handheld male and female larval FTIR spectra can be found in 
Figure S4.

During Event 1, the same flies analyzed with benchtop FTIR were 
also measured using handheld FTIR, except for two flies that were 
analyzed with handheld FTIR but were killed during handling before 
benchtop analysis. Male and female third instar Ch. rufifacies larvae 
analyzed in this manner shared peaks at 1072, 1152, 1237, 1312, 
1340, 1396, 1456, 1541, and 1631 cm−1 in the fingerprint mid-IR 
region. Additionally, compared with the benchtop data, the hand-
held FTIR spectra showed two extra peaks in the analytical region, 
with shared peaks at 2324, 2364, 2851, and 2920 cm−1 (Figure  3). 
These “new” peaks (2324 and 2364 cm−1) are likely attributed to the 
decomposition byproducts from the larvae's meal (Table 1), as the 
larvae were first analyzed with the handheld FTIR and then with the 
benchtop FTIR during Event 1.

Pairwise Wilcoxon rank-sum tests were conducted across the 
combined benchtop and handheld datasets to compare instrumen-
tal variances between sexes, as shown in Figure 4. The two addi-
tional peaks identified in the handheld FTIR analysis were excluded 
from this comparison due to their absence in the benchtop FTIR 

data, referred to as the “null region.” The results indicate that most 
vibrational bands within the fingerprint region exhibit significant 
differences in median FTIR signals between male and female Ch. rufi-
facies across both datasets. Specifically, significant differences were 
observed at 1053, 1237, 1312, 1340, 1396, 1457, and 1541 cm−1, 
corresponding to various molecular vibrations of proteins, lipids, 
and other hydrocarbons. Pairwise comparison plots, generated in 
MATLAB (Figures S5 and S6), were used to assess trends in the rel-
ative abundance of these molecules between sexes. The analysis 
revealed that male third instar Ch. rufifacies consistently exhibited 
higher abundances of proteins, lipids, and hydrocarbons at all peaks 
of significance (Table 2).

Currently, there are no studies that specifically identify the 
proteins, lipids, or hydrocarbons in the larval cuticles of Ch. ru-
fifacies or many other fly species. However, research has ex-
plored differences in hydrocarbons and their concentrations 
between male and female flies, as observed in peaks at 1396 and 
1450–1457 cm−1. For instance, Butterworth et  al. (2020a) ana-
lyzed the cuticular hydrocarbons of Ch. rufifacies larvae using gas 

TA B L E  1  FTIR bands and respective molecular vibrational 
modes and biomolecular assignments.

IR region
Wavenumbers 
(cm−1) Peak assignment

Fingerprint 1053–1072 C-O stretching; 
proteins [29, 30]

1152–1159 C-O stretching; lipids [29–31]

1237 (Amide III) C-N 
stretching, N-H bending; 
proteins [29, 32, 33]

1312–1314 O=C-O bending; 
proteins [29, 34]

1340 C-O stretching; proteins and 
lipids [29, 30]

1396–1400 C-H stretching, C-O bending; 
hydrocarbons, lipids, and 
proteins [29, 30]

1450–1457 C-H stretching, C=C 
stretching; hydrocarbons, 
lipids, and proteins [29, 30, 32]

1539–1541 (Amide II) N-H bending, C-N 
stretching; proteins [29, 30]

1631 (Amide I) C=O stretching, 
C-N stretching, N-H bending; 
proteins [22, 29, 30]

Analytical 2324 (R-SO2)-O-H stretching; 
decomposition 
byproducts [29]

2364 (R-SO2)-O-H stretching; 
decomposition 
byproducts [29]

2851 C-H stretching; 
hydrocarbons [29, 35]

2919–2920 C-H stretching; 
hydrocarbons [29, 35]
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6  |    HOLMAN et al.

chromatography–mass spectrometry (GC–MS) and found distinct 
profiles between males and females [20]. The most abundant 
hydrocarbons identified were monomethylalkanes, n-alkanes, 
and n-alkenes. Further analysis revealed that males had a higher 

abundance of cuticular hydrocarbons in most blowfly species, 
with Ch. rufifacies males showing higher levels in six out of ten 
hydrocarbons analyzed, including nearly 28 times more C27:2 hy-
drocarbons than females. By contrast, females surpassed males in 

F I G U R E  2  Mean benchtop FTIR spectra of male (green) and female (red) third instar Ch. rufifacies larvae analyzed in Event 1 (A), 
Event 2 (B), combined Events 1 and 2 (C), and after preprocessing (D–F).
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only four out of ten hydrocarbons, with no more than four times 
the abundance in those cases (Table 3).

Furthermore, evidence of protandry, a pattern where males de-
velop or mature earlier than females, is increasingly documented 
across blowfly species. Notably, the same group, Butterworth et al. 
(2020b), demonstrated that in Chrysomya varipes, a close relative of 
Ch. rufifacies, male CHC profiles develop 1–2 days earlier than fe-
males post-eclosion, coinciding with earlier reproductive maturity 
[19]. This developmental lead in males aligns with our findings of 
sex-specific chemical signatures already present at the third instar 
larval stage in Ch. rufifacies, suggesting that sex-linked differences 
in CHC composition may begin well before adult emergence, despite 
the shedding of the cuticle at each new life stage. These converging 
lines of evidence reinforce the biological plausibility of using vibra-
tional spectroscopy to differentiate sexes in immature stages.

Other research on the sex-dependent growth of Drosophila lar-
vae has demonstrated that males tend to focus on increasing size 
during development, resulting in higher protein expression, while 
females often exhibit greater lipid storage, reflecting their repro-
ductive needs later in life [36]. Although our results suggest that 
males might possess higher overall levels of proteins and lipids com-
pared with females, the observed higher peak indices in FTIR spec-
tra could be attributed to differences in the molecular composition 
or density of specific biomolecules, such as cuticular hydrocarbons 
or other surface lipids, which vary between sexes. These findings 
align closely with results from our previous study, where male Co. 
macellaria third instar larvae exhibited higher relative absorbances 
at most peaks in the fingerprint region, except for specific peaks at 
1238 and 1547 cm−1, where females showed higher absorbance, and 
1454 cm−1, which showed no significant difference [26].

In addition to the numerous significant differences in molecular 
abundance across peaks, which illustrate distinct spectra between 
male and female third instar Ch. rufifacies larvae, various machine 

learning models were employed to classify male and female spectra 
for forensic purposes. Two versions of each model were developed: 
one using only mean centering and the other incorporating a first-
derivative Savitzky–Golay filter followed by mean centering.

To evaluate the effectiveness of using a single dataset for cali-
bration, as done previously [26], Event 1 benchtop FTIR data were 
used to calibrate PLSDA, XGBDA, and ANNDA models, which were 
then tested on Event 2 benchtop FTIR data (Table  4). The mod-
els with mean centering consistently outperformed those with 
first-derivative processing in terms of classification accuracy and 
sample-level accuracy, with PLSDA, XGBDA, and ANNDA achieving 
classification accuracies of 42.6%, 43.5%, and 40.0%, respectively, 
without first-derivative processing. None of the models achieved 
accuracy above 70%, suggesting that the sample size was too small 
to adequately represent the entire dataset, indicating that training a 
model on data from a single event is insufficient. Interestingly, inter-
nal cross-validation of these models yielded much higher accuracies, 
with most models reaching 98% or higher. This discrepancy suggests 
that machine learning models trained on small sample sizes, as in this 
case, should undergo external validation to provide a more accurate 
reflection of classification performance in real-world applications.

Additionally, we sought to determine if the Event 1 bench-
top FTIR data, validated by handheld FTIR data, performed better 
than validation using Event 2 benchtop FTIR data. This hypothesis 
is based on the idea that both datasets use the same samples but 
different instruments. Compared with the model tested previously 
with Event 2 benchtop FTIR data, the model with Event 1 benchtop 
FTIR data performed better in all cases, regardless of whether first-
derivative filtering was applied (Table 5). Both PLSDA and ANNDA 
models showed improved performance after the first derivative 
was applied, achieving classification accuracies of 69.1% and 68.2%, 
respectively. However, XGBDA experienced a 12-point decrease 
in classification accuracy, dropping from 58.2% to 46.4% with the 

F I G U R E  3  Mean handheld FTIR spectra of male (green) and female (red) third instar Ch. rufifacies larvae analyzed during event 1 before 
(A) and after preprocessing (B).
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addition of first-derivative filtering. These results suggest that al-
though both benchtop and handheld instruments can extract similar 
spectra from the same samples, models trained on small datasets 
tend to underperform, likely due to the limitations of the data vol-
ume and variability.

Finally, both benchtop datasets were combined to assess 
whether a larger, more robust dataset would improve model per-
formance when tested with handheld FTIR data. We found that 
increasing the calibration dataset significantly enhanced model per-
formance. For PLSDA and ANNDA, classification accuracies reached 
90.0% and 94.5%, respectively, when first-derivative filtering was 
applied (Table 6). Without the first-derivative filter, the accuracies 
dropped to 63.6% and 68.2%, highlighting the importance of this 
preprocessing step. The sample-level accuracy, which indicates how 
many samples' sexes were correctly predicted, was even higher, 
nearing 91% and 96% for PLSDA and ANNDA, respectively.

By contrast, XGBDA consistently underperformed, with clas-
sification accuracies of 58.2% and 36.4% with and without first-
derivative filtering. Internal cross-validation performance showed a 
slight decrease compared to models trained only on Event 1 bench-
top data, but this discrepancy brought the results closer to actual 

external validation performance, especially when first-derivative fil-
tering was used. These findings demonstrate that machine learning 
models can effectively differentiate male and female third instar Ch. 
rufifacies larvae from handheld FTIR data.

While our findings demonstrate that FTIR spectroscopy can 
distinguish male and female Ch. rufifacies larvae with high accuracy 
under controlled conditions, additional studies are needed to ex-
plore how ecological and environmental factors may influence the 
chemical signatures used for sex classification. In natural settings, 
Ch. rufifacies larvae develop within dense maggot masses that may 
consist of mixed-sex clutches from multiple females. Under such 
conditions, factors like resource availability, larval crowding, and 
sex ratio could influence the expression of cuticular compounds, po-
tentially altering the degree of sexual dimorphism observed in FTIR 
spectra. Increased competition or varying nutrient access could shift 
larval metabolic priorities, leading to plasticity in cuticular lipid, pro-
tein, or hydrocarbon profiles.

Moreover, temperature is a critical environmental variable that 
likely modulates cuticular chemistry. Since lipids and hydrocarbons 
play a role in desiccation resistance, sex-specific FTIR signatures ob-
served at one temperature (e.g., 25°C, as done here) may not persist 

F I G U R E  4  Manhattan plot for Wilcoxon test (with Bonferroni correction) results between male and female benchtop (blue) and handheld 
(green) FTIR spectra. The threshold corresponds to a p-value of 0.05. Overlapping regions above the threshold were shaded in purple to 
demonstrate which FTIR bands were significant across both datasets. The “null region” refers to the ~1800–2800 cm−1 range in the FTIR 
spectra, which, despite the handheld IR data, lacks distinctive or biologically relevant peaks and exhibits minimal spectral variability. As such, 
any statistically significant differences observed in this region are unlikely to reflect meaningful biochemical variation and are more likely 
artifacts of baseline noise or low-amplitude fluctuations.
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at higher or lower rearing temperatures, where physiological adapta-
tions may differ between sexes. The extent to which environmental 
stressors like heat or desiccation influence sexually dimorphic ex-
pression patterns remains an open question.

The potential for phenotypic plasticity in larval cuticular chem-
istry is supported by findings in other dipteran species. For in-
stance, Berdan et al. (2019) showed that CHC expression in Coelopa 
frigida larvae varied with diet, while Thomas and Simmons (2011) 
demonstrated that social interactions (crowded vs. isolated) influ-
enced CHC profiles in crickets [37, 38]. These results suggest that 
cuticular biochemistry is both dynamic and context-dependent, 
emphasizing the need for future work to test the robustness of 
FTIR-based sex classification under varied ecological conditions. 
Incorporating such factors into future model training will be essen-
tial for deploying these methods in realistic forensic or field-based 
applications.

4  |  CONCLUSIONS

In summary, our analysis of male and female Ch. rufifacies third 
instar larvae using FTIR spectroscopy revealed significant dif-
ferences in their spectral profiles, particularly in the fingerprint 

region, with males consistently exhibiting higher abundances of 
proteins, lipids, and hydrocarbons. Key peaks, such as 1053–1072, 
1237, 1312–1314, 1340, 1396, 1450–1457, and 1539–1541 cm−1, 
were most notable in distinguishing the sexes, suggesting that the 
male larvae have a distinct cuticular composition and higher abun-
dance of hydrocarbons, likely due to sexual selection. Machine 
learning models, including PLSDA and ANNDA, successfully clas-
sified male and female larvae, with performance notably improv-
ing when a larger calibration dataset was used, and first-derivative 
filtering was applied. However, XGBDA consistently underper-
formed compared with PLSDA and ANNDA, with classification ac-
curacies no higher than 58.2%, in contrast to its more optimistic 
cross-validation results. This underperformance emphasizes the 
challenges of using small datasets for machine learning models 
and highlights the importance of external validation. These find-
ings demonstrate that handheld and benchtop FTIR spectroscopy, 
coupled with high-performing machine learning, can effectively 
differentiate between male and female third instar Ch. rufifacies 
larvae. However, to refine this approach for field application, fu-
ture research should include time-series analyses across larval de-
velopment, such as sampling larvae every 12–24 h with multiple 
biological replicates, to determine how sex-specific spectral differ-
ences evolve over time. Temperature and mixed-brood conditions 

Wavenumbers (cm−1)
BT 
p-value HH p-value

Higher ranks 
(M/F)? Peak assignment

1053–1072 0.0097 p < 0.001 M Proteins

1237 p < 0.001 0.0069 M Proteins

1312–1314 0.0026 p < 0.001 M Proteins

1340 0.0015 p < 0.001 M Proteins/lipids

1396 0.0011 p < 0.001 M Proteins/lipids/
hydrocarbons

1450–1457 p < 0.001 p < 0.001 M Proteins/lipids/
hydrocarbons

1539–1541 0.0074 p < 0.001 M Proteins

TA B L E  2  Pairwise comparison 
Wilcoxon test results for overlapping 
peaks between the combined benchtop 
(BT) and handheld (HH) datasets.

Hydrocarbon
Male relative 
abundance (%)

Female relative 
abundance (%) M:F ratio

C21 0.15 0.077 1.9

C25:1 0.042 0.15 0.3

C27:2 0.12 0.0043 27.9

11-Me-C27 1.5 5.9 0.3

3-Me-C27 1.1 0.27 4.1

C29:1 2.9 9.7 0.3

(Unknown) 2.5 0.81 3.1

11,13-Me-C31 4.7 10 0.5

2-Me-C32 5.8 0.78 7.4

C33:1 5.7 1.3 4.4

TA B L E  3  Ch. rufifacies GC–MS 
cuticular hydrocarbon analysis between 
sexes. Adapted from Butterworth et al. 
(2020) [20].
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should also be systematically investigated to assess their potential 
effects on cuticular FTIR signatures. This developmental context 
will be crucial for validating models on field-collected specimens 
that naturally vary in age, size, and growth rates. Continued ef-
forts should also explore the potential of this method for differ-
entiating sexes in earlier instars using the same nondestructive 
approach.
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TA B L E  4  Various performances for machine learning models trained on Event 1 benchtop FTIR data tested with Event 2 benchtop 
FTIR data.

External validation
Internal 
cross-validation

ML model
1st 
derivative?

Sample-level 
accuracy Accuracy M sensitivity F sensitivity

Global F1 
score MCC Accuracy MCC

PLSDA No 43.5% 42.6% 78.0% 15.4% 42.6% −0.085 100.0% 1.000

Yes 17.4% 19.1% 30.0% 10.8% 19.1% −0.610 100.0% 1.000

XGBDA No 43.5% 43.5% 100.0% 0.0% 43.5% – 98.0% 0.956

Yes 39.1% 42.6% 24.0% 56.9% 42.6% −0.199 100.0% 1.000

ANNDA No 43.5% 40.0% 78.0% 10.8% 40.0% −0.153 100.0% 1.000

Yes 34.8% 30.4% 38.0% 24.6% 30.4% −0.377 100.0% 1.000

Abbreviations: AML, machine learning; M, male; F, female; MCC, Matthew's correlation coefficient.

TA B L E  5  Various performances for machine learning models trained on Event 1 benchtop FTIR data tested with Event 1 handheld 
FTIR data.

External validation
Internal 
cross-validation

ML model
1st 
derivative?

Sample-level 
accuracy Accuracy M sensitivity F sensitivity

Global F1 
score MCC Accuracy MCC

PLSDA No 50.0% 51.8% 74.3% 12.5% 51.8% −0.156 100.0% 1.000

Yes 68.2% 69.1% 71.4% 65.0% 69.1% 0.355 100.0% 1.000

XGBDA No 59.1% 58.2% 91.0.4% 0.0% 58.1% −0.182 98.0% 0.956

Yes 45.5% 46.4% 35.7% 65.0% 46.4% 0.007 100.0% 1.000

ANNDA No 45.5% 50.0% 74.3% 7.5% 50.0% −0.223 100.0% 1.000

Yes 68.2% 66.4% 71.4% 57.5% 66.4% 0.285 100.0% 1.000

Abbreviations: F, female; M, male; MCC, Matthew's correlation coefficient; ML, machine learning.

TA B L E  6  Various performances for machine learning models trained on combined benchtop FTIR data tested with Event 1 handheld 
FTIR data.

External validation
Internal 
cross-validation

ML model
1st 
derivative?

Sample-level 
accuracy Accuracy M sensitivity F sensitivity

Global F1 
score MCC Accuracy MCC

PLSDA No 63.6% 63.6% 85.7% 25.0% 63.6% 0.134 97.7% 0.954

Yes 90.9% 90.0% 90.0% 90.0% 90.0% 0.789 99.1% 0.981

XGBDA No 36.4% 36.4% 0.0% 100.0% 36.4% – 97.6% 0.953

Yes 59.1% 58.2% 34.3% 100.0% 58.2% 0.399 99.5% 0.991

ANNDA No 68.2% 68.2% 92.9% 25.0% 68.2% 0.250 99.5% 0.991

Yes 95.5% 94.5% 92.9% 97.5% 94.5% 0.887 100.0% 1.000

Abbreviations: F, female; M, male; MCC, Matthews' correlation coefficient; ML, machine learning.
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