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ABSTRACT

Lyme disease (LD), caused by Borreliella burgdorferi, is the most common tick-borne illness in the United States, yet early-stage
diagnosis remains challenging due to the limitations of current serological diagnostics. Raman spectroscopy (RS), paired with
partial least squares discriminant analysis (PLS-DA), showed promise as an alternative diagnostic tool. Using RS, we analyzed
107 coded human blood samples (42 LD-positive and 65 LD-negative) obtained from the Lyme Disease Biobank. PLS-DA models
showed nearly perfect internal validation performance with a sensitivity and specificity of 97.1% and 100.0%, respectively, indi-

cating robust predictive capabilities. External validation of the developed chemometrics model with 80/20 training/validation
split of all spectra gave true positive rates of 92.7% and 87.3% for serological positive and negative spectra, respectively. These
findings highlight the potential of RS as a rapid and noninvasive diagnostic platform for LD, particularly when integrated with

machine learning.

1 | Introduction

Lyme disease (LD) is a bacterial infection caused by spirochete
Borreliella burgdorferi (B. burgdorferi) primarily in the temper-
ate regions of North America. The disease was first recognized
in New England in the 1970s, but it is now prevalent down to
the mid-Atlantic and Great Lakes regions. It is the most preva-
lent tick-borne illness in the United States [1, 2]. The pathogen is
vectored by Ixodid ticks. The disease progresses through three
stages, with the telltale sign being erythema migrans (colloqui-
ally referred to as the bulls-eye rash); however, the slow progres-
sion of the disease combined with flu-like symptoms makes it
often difficult to diagnose [3-5]. The disease is readily treated
with antibiotics but can pose prolonged symptoms and chronic
status if not treated appropriately within the first stages [6].

© 2025 Wiley-VCH GmbH.

Currently, three LD diagnostic approaches have been cleared by
the FDA: a two-tiered serology system using an enzyme immuno-
assay (EIA) followed by Western blot, a modified two-tiered se-
rology system using two EIAs, or the new stand-alone iDart Lyme
IgG ImmunoBlot Kit [7-9]. There are several limitations, how-
ever, notably low sensitivity during the early stage, even for LD
patients with erythema migrans [10]. Similarly, cross-reactivity
and background seropositivity complicate findings. Most impor-
tantly, however, serological tests also cannot distinguish between
active and past infections or reinfections [11]. These problems
underscore a major need for more accurate and robust diagnostic
methods, especially in early-stage disease. Current research fo-
cuses on direct and indirect approaches to this, such as cytokine-
based immunoassays, the detection of biomarkers from serum
protein patterns, or spectroscopic techniques [12-14].
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Recently, two studies on Raman spectroscopy (RS) for LD diag-
nostics were conducted by our laboratories [15, 16]. In our pre-
vious studies, the researchers collected and analyzed spectra of
blood from mice infected with three strains from all the major
clades of B. burgdorferi found within the United States as well
as infected with two European genospecies Borreliella afzelii and
Borreliella garinii. Our results had true positivity rates ranging
from 83% to 100% accuracy of identification when using partial
least squares discriminant analysis (PLS-DA). Additionally, we
collected spectra of 90 human blood samples. These results in-
dicate the major potential RS has as an LD diagnostic tool when
paired with machine learning algorithms. The major advantage
of using RS for diagnostics is the rapid detection of metabolic
patterns present within a blood sample [17, 18]. RS is a form of
vibrational spectroscopy that works by using a laser to probe
vibrational bonds present with a sample, thereby providing in-
formation about the chemical composition of a sample. Changes
within spectra between serologically negative and positive sam-
ples can then be used to diagnose LD. It should be noted that in
addition to LD, RS was used to diagnose numerous diseases in
plants, animals, and humans. For instance, Farber and Kurouski
showed that RS could be used to detect fungal infections in
corn [19], while Sanchez et al. demonstrated that changes in the
plant biochemistry caused by the gram-negative Candidatus
Liberibacter spp. bacteria could be used to detect and identify cit-
rus greening disease [20]. Giuseppe et al. found that RS could be
used to differentiate between healthy and Leishmania-infected
dogs [21], whereas Vyas recently reported that changes in saliva
probed by RS could be used to diagnose Sjogren’s disease [22].

The approach presented in the current study is an expansion of
our previous investigations [15, 16], which is focused on assessing
our chemometrics model's capability when used with external
validation of unidentified human blood samples. Specifically, we
have collected spectra from a new set of 107 human blood samples
obtained from anonymous donors. We built and evaluated three
PLS-DA models that were first constructed using the spectra pre-
viously generated from the 90 human blood samples in our earlier
study [16] and then refined by analyzing an additional set of human
blood samples in the present investigation. These models were then
either externally or internally validated against the second portion
of unidentified human blood samples. We focused on PLS-DA due
to the broad acceptance of this supervised classification method
in the field of spectroscopy, as well as its low demand for compu-
tational resources. It should be noted that in comparison to other
supervised classification algorithms, PLS-DA typically performs
similarly or better than linear discriminant analysis (LDA) or soft
independent modeling by class analogy (SIMCA) [23].

2 | Methods
2.1 | Blood Acquisition

A total of 107 human whole blood samples (EDTA tubes) were
provided by the Lyme Disease Biobank (LDB) (Table S1) [24].
Of the 107 specimens, 42 samples originated from LD patients,
whose diagnosis was serologically confirmed by the two-tier sys-
tem or by 2 positive EIAs (LD-confirmed samples), and the other
65 samples represented LD-free individuals, who tested negative
by serology (controls). First, all 107 samples were coded by the

LDB to mask their LD status (positive and negative control sam-
ples), which allowed us to perform the blind study in two steps.
First, 26 specimens, which consisted of 7 LD-confirmed and 19
control samples, were analyzed, and the results were submitted
to the LDB for decoding. In our second blind study, the remain-
ing still-unrevealed 81 specimens (35 LD-confirmed and 46 con-
trol samples) were subjected to RS, after which the results were
submitted to the LDB for decoding.

2.2 | Spectroscopy

For use in RS, blood samples were thawed and vortexed before
50uL were spread onto aluminum foil-wrapped microscope
slides and scanned directly wet [16]. Between 30 and 60 spectra
were acquired from all 107 human blood samples. Spectra for the
study were collected using a Nikon inverted confocal microscope
(model TE-2000U) equipped with the 20x dry Nikon objective;
spectral acquisition time was 30s per spectrum. Spectra were ac-
quired during 6 months. A 785nm solid-state laser was directed
toward the sample, passed through a 50/50 beam splitter, and
then collected using backscattering geometry, with the Rayleigh
scattering traveling through a long-pass filter (Semrock, LP03-
785RS-25) before finally entering an IsoPlane-320 spectrometer
(Princeton Instruments) equipped with a 600 groove/mm grat-
ing. The collected light lastly entered the CCD detector (PIX-
400BR). The laser power was set to 8mW for all acquisitions.

2.3 | Chemometrics

PLS_toolbox (Eigenvector Research Inc) was used in MATLAB to
perform all machine learning algorithms. All spectra were base-
lined using Automatic Weighted Least Squares with an eighth-
order polynomial and then background subtracted. This differs
from the preprocessing done by Goff et al, who used a sixth-order
polynomial [16]. Validation spectra were also smoothed using the
Savitzky—Golay filter. The model spectra were averaged in groups
of 2-12 and evaluated according to PLS-DA internal validation
to improve the signal-to-noise ratio. The two groupings' aver-
ages with the best true positive rates (TPRs) for each model were
then kept as preliminary Models A, B, and C. These six models
were then compared against 81 unidentified human blood sam-
ples as external validation, and the three best models were kept
as final Models A, B, and C. From binary comparison with the
81 blood specimens, every sample was assigned a value between
0 and 1 by each model. This value was used to determine if the
model predicted a sample as positive or negative. After model
completion, the status of each of the 81 samples was revealed,
and all models were calculated for true positives, true negatives,
false positives, and false negatives. All remaining model statistics
were performed via formulas in Microsoft Excel.

3 | Results
3.1 | Raman Spectra
The Raman spectra collected from the blood contained peaks

related primarily to heme (562, 676, 752, 962, 1226, 1376, and
1532c¢m™), protein (1002, 1172, 1275, and 1340cm™"), and other
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aromatic molecules (1604 and 1622cm™). These peaks closely
corresponded with the Raman spectra acquired from murine
blood in our previous experiments [15, 16]. Small visual changes
between the confirmed positive blood and the serologically neg-
ative blood could be observed throughout the spectra (Figure 1).
Averaged Raman spectra of human blood samples with the
mean and standard deviations for serologically negative or pos-
itive status are shown in Figure S1. The largest changes were
increases in the protein-related peaks (1275 and 1340cm™)
correlating with positive infection, an increase in the heme-
related peak (1376cm™), and a decrease in the heme-related
peak (562cm™), both correlated again with positive infection.
Previously reported analysis of metabolic profiles of blood ob-
tained from early-stage LD patients using mass-spectroscopy
revealed changes in the concentration of over 30 different bio-
molecules, including proteins, lipids, and their derivatives such
as cholesterol, cholesteryl acetate, diacylglycerol, phospholipids,
sphingolipids, and triglycerides [25].

3.2 | Model Construction

Using our preliminary database of human blood scans, along
with the new scans of the 107 human blood samples obtained in
the present study, we have built three PLS-DA models to analyze
RS's potential for accurate LD diagnosis (Figure 2). Model A was
built first, using the 8198 spectra previously collected by Goff
et al. [16]. This model was largely similar to the model reported,
albeit with an alternative preprocessing of the spectra. Model B
was built by adding in 1630 spectra from 26 of the now-classified
samples to the spectra from Model A. Finally, Model C contained
all 9828 spectra from Model B, along with 1785 spectra from the
remaining 81 human blood samples. Models A and B had their
performance externally validated against the unknown 81 blood
samples, while Model C was only internally validated against
the 81 samples due to being composed of spectra from all 107
samples but was briefly externally validated using an 80/20 split
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FIGURE1 | Averaged Raman spectra of human blood samples with
serologically negative or positive status for Lyme disease. Red bands in-
dicate heme-related peaks, blue bands indicate protein-related peaks,
and yellow bands indicate aromatic-related peaks.

of the spectra comprising the model. Additionally, Models A and
B were trimmed at 1700 cm™ to reduce noise and improve model
performance. Model C performed well and was left untrimmed.

To improve the signal-to-noise ratio of the Raman spectra, each
group was randomly averaged in groups of 2-12 spectra accord-
ing to their serological status (Figure 3, Table 1). For all models,
as the grouping size increased, the TPR for spectral classification
improved as determined by internal validation. TPR of spectra
obtained from the negative controls trailed TPR of confirmed
positive spectra in all instances. After TPR had been plotted, the
two best-performing averaging sizes for all preliminary models
were 9 and 11 spectra per averaging group. Both grouping sizes
were externally validated for each preliminary model, and the
stronger preliminary model was kept as our final Models A, B, or
C. The three final models are based on the 9, 11, and 9 averaging
groups, respectively, all of which had internally validated TPRs
between 83% and 88%. Latent variables for each PLS-DA model
were selected by plotting calculated and cross-validation classi-
fication errors for TPR against the number of latent variables.
The latent variable with the lowest classification error and the
lowest root mean square error of cross-validation (RMSECV)
was then selected for the model. Final models of A, B, and C
used 8, 15, and 13 latent variables, respectively.

3.3 | Model Evaluation

After selecting the final models, Models A and B were exter-
nally validated using PLS-DA, while Model C was only inter-
nally validated (Figure 4, Table 2). The results for Model A
showed a large selection bias towards negative predictions,

Model A

External Validation

vs. 81 New Scans

Model B
Model C M

FIGURE 2 | Workflow of model design and evaluation.

30f7

- psnoIny} Aniwa Ag 025007202 01a/200T 0T/10pALI0D" A8 1M Aeiqeut|uo/ Sy o1} papeojumod ‘0 ‘8r90r98T

85U SUOWILLIOD BAEBID) Bqed!jdde 8Ly Aq peusAoh a1 sao1e YO '8N 4O S3|N1 1o} AReig 1T BUIIUO 481\ UO (SUOHPUOD-PUE-SLLLB}/WO" A3 | 1M ARe.1q1BU1UO//SHIY) SUORIPUOD PUE SLLB L BLY 885 *[G202/20/02] Uo ARiqITauliuo Al *seLeiqi AIseAlN NBY sexdL



Preliminary Models A

Preliminary Models B

Preliminary Models C

90

85

80

True Prediction Rate

75

70

Group Averaging Size

Group Averaging Size

90 90
]
° o °
. e ° g e %,
° & i ° e °
° c 85 e O 3 c 85 e o 0 0 -
[ PO 2 2
. ° o B ° P K [ o ®
o ° ° o k-]
2 . ® e o ° ° .
°
. ° o g0 ° ° o go .
o ° ° g ° ° g
° = ° ° = °
° °
© 75 e 75 .
® Confirmed + ® Confirmed + ® Confirmed +
.
° ® Serologically - @ Serologically - ° ® Serologically -
70 70
5 10 15 [} 5 10 15 5 10 15

Group Averaging Size

FIGURE 3 | Relationship between group averaging size and true prediction rates for preliminary models as determined by internal validation.

TABLE1 | Relationship between group averaging size and true prediction rates for preliminary models as determined by internal validation.
Preliminary Model A Preliminary Model B Preliminary Model C
Group
average Number of TPR TPR Number of TPR TPR Number of TPR TPR
size spectra +) =) spectra +) ) spectra +) -)
1 8198 77% 72% 9828 78% 69% 11613 81% 72%
2 4098 78% 76% 4914 81% 73% 5805 83% 75%
3 2734 80% 78% 3275 83% 76% 3871 85% 78%
4 2050 82% 79% 2457 80% 78% 2904 85% 81%
5 1640 84% 76% 1967 82% 79% 2323 85% 80%
6 1367 83% 79% 1639 81% 80% 1937 85% 82%
7 1172 84% 83% 1405 82% 81% 1660 87% 83%
8 1025 85% 82% 1229 85% 81% 1452 86% 83%
9 912 88% 83% 1093 85% 81% 1291 87% 85%
10 820 87% 80% 984 85% 79% 1162 87% 85%
11 747 90% 85% 894 87% 83% 1057 88% 88%
12 684 87% 83% 819 83% 83% 969 87% 86%
Model A Model B Model C
—  ml
0.9
2 08
8 Negative 1 Negative Negative 46 }
c 0.7
g 0.6
5 0.5
g 0.4
2 Positive 3 Positive 11 24 Positive 34 ZZ
0.1
Negative Positive Negative Positive Negative Positive °

Predicted Diagnosis

FIGURE4 | Confusion matrices for Models A, B, and C. Color intensity represents classification accuracy given as the proportion of correct pre-

dictions relative to the actual diagnosis.
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TABLE 2 | Evaluation parameters for Models A, B, and C.

Model A Model B Model C
Sensitivity 8.6% 68.6% 97.1%
Specificity 97.8% 60.9% 100%
PPV 75% 57.1% 100%
NPV 58.4% 71.8% 97.9%
Accuracy 59.3% 64.2% 98.8%
F1 score 15.4% 62.3% 98.6%
Brier score 0.384 0.314 0.034
MCC 0.146 0.292 0.989
AUC 0.542 0.623 0.986

while Model B showed much improved performance, with
overall more true positives and true negatives than false posi-
tives and false negatives. Model C prediction was almost per-
fect, except for a singular false negative. Using the values in
the confusion matrix, we calculated the sensitivity (recall)
and specificity for the models, which evaluated the models'
ability to correctly identify positive samples and negative sam-
ples, respectively. The large bias toward negative predictions
from Model A results in a high specificity of 97.8%; however,
this was offset by the incredibly low sensitivity of 8.6%. Model
B, being composed of more spectra, had better sensitivity, and
Model C had even more, leading to the conclusion that the
models' sensitivity would continue improving as more spectra
were given to it for training.

The positive predictive value (PPV or precision) and negative
predictive value (NPV) indicate the likelihood that a positive or
negative prediction in the model is correct.

Model B shows a significant improvement in NPV compared to
Model A; however, its PPV is lower as a lack of confirmed pos-
itive assignments in Model A artificially inflated its PPV. Both
values were near 100% in Model C. The accuracy parameter pro-
vides us with an understanding of the total correctness of the
model across both positive and negative predictions. Here, we
see clear improvements in model performance across Model A
to Model B to Model C, indicating that the model becomes more
accurate as it trains on more spectra.

In clinical diagnostics, both sensitivity and PPV are important
metrics, and the F1 score combines these two values into one
metric. The low sensitivity of Model A is reflected in its F1 score
of 15.4%, but in Models B and C, the F1 score is at 62.3% and
98.6%, reflecting the model's much greater diagnostic capabili-
ties. The Matthews correlation coefficient (MCC) measures the
model's capabilities when accounting for all true and false pos-
itives and negatives. Neither Model A nor Model B performed
very well in this regard, likely due to the higher amounts of
false positives and false negatives. Finally, the Brier score pro-
vides insight into the model's confidence in binary classification
assignment, with a score of 0 indicating complete confidence.
From this, we can understand that Models A and B had a sim-
ilar amount of confidence (0.384 and 0.314) but that Model C

had the strongest confidence (0.034) when making classification
assignment.

When looking into how the model classifies spectra, we can
measure the AUC (area under the curve) of the ROC (receiver
operating characteristic) curve. By plotting the models’ TPR
and FPR across threshold levels from 0 to 1, we can evaluate
the effectiveness of the model in class discrimination compared
to random chance in what is called the ROC curve (Figure 5).
The results of this curve show that the discrimination abilities of
Model A are only slightly above random chance, while Model B
has significantly better ability. Model C's ROC curve shows that
the model had an almost near-perfect discrimination ability. To
quantify these curves, we calculated the AUC for the models.
These values reflect the previous assessment about the models'
different discrimination abilities.

Finally, a major advantage of PLS-DA is the ability to plot load-
ings or latent variables from the model to understand how a
decision is being made about class assignment (Figure 6). A la-
tent variable analysis (LVA) plot corresponding to the PLS-DA
loadings for Model C is shown in Figure S2. Based on the first
three latent variables for Model C, we can see that intensity at
the 752, 1002, 1226, 1340, and 1376cm™" peaks, as well as the
1562-1622cm™! region; all play key roles in the model's assign-
ment of classes. Taken together, these three latent variables con-
stitute 78.76% of the model's variance within class distinction.

4 | Discussion

The results of this study align well with our previous studies
and help visualize them in the context of LD diagnostics. The
PLS-DA loadings highlight that changes in heme and protein
content heavily contribute to the model's classification capa-
bilities, but that changes are not specific to any one metabolite.

Receiver Operating Characteristic Curve
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FIGURE 5 | Receiver operating characteristic curve for Models A,
B,and C.
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FIGURE 6 | PLS-DA loadings plot from Model C comprised the first
three latent variables (LVs). Greater deviation from the dotted line indi-
cates regions with a stronger influence on the PLS-DA model.

From a statistical viewpoint, it is clear Model A is not reliable in
any capacity for LD diagnostics. This model is purely built from
previously acquired human spectra, collected by different re-
searchers. The limitation of Model A, when externally validated,
reflects the complexity of human blood and performing human
diagnostics. This is most evident from the low F1 score and sen-
sitivity, despite high specificity and mediocre accuracy. This is
even clearer when Model A's ROC curve is visualized, where the
curve nears the line of random classification.

However, once Model A was expanded by the extra 26 samples to
create Model B, we could see a clearly marked increase in model
performance across most measures. Notably, Model B had large
increases in F1 score and sensitivity, and the increase in accu-
racy to 64.2%. Similarly, the ROC curve and AUC of Model B
show a clear improvement in discrimination ability, showing
that the predictive capabilities of Model B are beyond random
classification, unlike what can be said for Model A. From a clin-
ical standpoint, the improvements in sensitivity and NPV but
decreases in specificity and PPV indicate the model's strength
lies in identifying true positives and accurately predicting neg-
ative samples when they appear. However, while the model is
adept at finding positives, it also classifies several negative cases
incorrectly as positive, leading to the lower specificity and PPV.
This reflects a bias towards positive detection, which is useful
for minimizing missed cases but reduces confidence in positive
predictions.

Finally, Model C was evaluated primarily using internal vali-
dation, as it included spectra from all available samples. Since
Model C was built using a group averaging size of 9 with spectra
randomly grouped by classification, the resultant training spec-
tra do differ from the original noisier spectra used for validation.
Nevertheless, external validation was also performed for Model
C using an 80/20 training/validation split of all spectra, giving
TPRs of 92.7% and 87.3% for serological positive and negative
spectra, respectively. Still, the strong performance of this model
leads us to believe, that further external validation of this model
using more clinical samples would lead to a better performance

than that of Model B. Similarly, while Model B is not in a state
ready for clinical implementation, the increases in performance
as the model trains on more spectra indicate that stronger and
more robust models can be built with access to more human
blood samples.

The greatest limitation of results in this study was the number
of samples available. With access to more samples, an opti-
mal study would be able to separate training, validation, and
test sets to evaluate model performance. Similarly, the largest
set of data (the 8198 original spectra) is singularly sourced,
while the additions come from a separate source. Relying on
one population source for samples can lead to a prediction bias
that causes findings to be applicable to samples from another
source, as can be seen in Model A. This is why, as more spec-
tra were added in from the new sample source, the model be-
came better at predicting the serological status of each sample.
Therefore, a more optimal model should be developed with
samples from a wide range of sources. This should be the pri-
mary focus of any future work aimed at fully developing an
RS-based test for LD diagnostics.

5 | Conclusion

In sum, this study demonstrates the potential of combining RS
with PLS-DA for LD diagnostics. Our findings largely exhibit
that model performance is tied both to the diversity and quantity
of samples tested. Model A had low statistical reliability, likely
due to its dependence on a single sample source, causing a bias
toward negative predictions. Model B had marked improvements
in sensitivity and predictive capabilities due to the inclusion of
new samples. Model C had the greatest statistical performance
but was only evaluated using internal validation. The models
overall demonstrate the importance of sample variety and quan-
tity to improve diagnostic accuracy, and importantly stress the
need for thorough external validation of built diagnostic models.
Future efforts should focus on refining these models to bring RS
closer to practical LD diagnostics.
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