
1 of 7Journal of Biophotonics, 2025; 0:e202400520
https://doi.org/10.1002/jbio.202400520

Journal of Biophotonics

RESEARCH ARTICLE

External Validation of Raman Spectroscopy for Lyme 
Disease Diagnostics
Isaac D. Juárez1,2  |  Aidan P. Holman1,2   |  Elizabeth J. Horn3   |  Artem S. Rogovskyy4   |  Dmitry Kurouski1,2

1Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA  |  2Interdisciplinary Faculty of Toxicology, Texas A&M 
University, College Station, Texas, USA  |  3Lyme Disease Biobank, Portland, Oregon, USA  |  4Department of Pathobiology and Diagnostic Investigation, 
College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA

Correspondence: Artem S. Rogovskyy (rogovsky@msu.edu)  |  Dmitry Kurouski (dkurouski@tamu.edu)

Received: 22 November 2024  |  Revised: 3 February 2025  |  Accepted: 6 February 2025

Funding: This study was supported by the Bay Area Lyme Foundation and the Texas A&M AgriLife Research.

Keywords: Borreliella burgdorferi | chemometrics | Lyme disease | PLS-DA | Raman spectroscopy

ABSTRACT
Lyme disease (LD), caused by Borreliella burgdorferi, is the most common tick-borne illness in the United States, yet early-stage 
diagnosis remains challenging due to the limitations of current serological diagnostics. Raman spectroscopy (RS), paired with 
partial least squares discriminant analysis (PLS-DA), showed promise as an alternative diagnostic tool. Using RS, we analyzed 
107 coded human blood samples (42 LD-positive and 65 LD-negative) obtained from the Lyme Disease Biobank. PLS-DA models 
showed nearly perfect internal validation performance with a sensitivity and specificity of 97.1% and 100.0%, respectively, indi-
cating robust predictive capabilities. External validation of the developed chemometrics model with 80/20 training/validation 
split of all spectra gave true positive rates of 92.7% and 87.3% for serological positive and negative spectra, respectively. These 
findings highlight the potential of RS as a rapid and noninvasive diagnostic platform for LD, particularly when integrated with 
machine learning.

1   |   Introduction

Lyme disease (LD) is a bacterial infection caused by spirochete 
Borreliella burgdorferi (B. burgdorferi) primarily in the temper-
ate regions of North America. The disease was first recognized 
in New England in the 1970s, but it is now prevalent down to 
the mid-Atlantic and Great Lakes regions. It is the most preva-
lent tick-borne illness in the United States [1, 2]. The pathogen is 
vectored by Ixodid ticks. The disease progresses through three 
stages, with the telltale sign being erythema migrans (colloqui-
ally referred to as the bulls-eye rash); however, the slow progres-
sion of the disease combined with flu-like symptoms makes it 
often difficult to diagnose [3–5]. The disease is readily treated 
with antibiotics but can pose prolonged symptoms and chronic 
status if not treated appropriately within the first stages [6].

Currently, three LD diagnostic approaches have been cleared by 
the FDA: a two-tiered serology system using an enzyme immuno-
assay (EIA) followed by Western blot, a modified two-tiered se-
rology system using two EIAs, or the new stand-alone iDart Lyme 
IgG ImmunoBlot Kit [7–9]. There are several limitations, how-
ever, notably low sensitivity during the early stage, even for LD 
patients with erythema migrans [10]. Similarly, cross-reactivity 
and background seropositivity complicate findings. Most impor-
tantly, however, serological tests also cannot distinguish between 
active and past infections or reinfections [11]. These problems 
underscore a major need for more accurate and robust diagnostic 
methods, especially in early-stage disease. Current research fo-
cuses on direct and indirect approaches to this, such as cytokine-
based immunoassays, the detection of biomarkers from serum 
protein patterns, or spectroscopic techniques [12–14].
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Recently, two studies on Raman spectroscopy (RS) for LD diag-
nostics were conducted by our laboratories [15, 16]. In our pre-
vious studies, the researchers collected and analyzed spectra of 
blood from mice infected with three strains from all the major 
clades of B. burgdorferi found within the United States as well 
as infected with two European genospecies Borreliella afzelii and 
Borreliella garinii. Our results had true positivity rates ranging 
from 83% to 100% accuracy of identification when using partial 
least squares discriminant analysis (PLS-DA). Additionally, we 
collected spectra of 90 human blood samples. These results in-
dicate the major potential RS has as an LD diagnostic tool when 
paired with machine learning algorithms. The major advantage 
of using RS for diagnostics is the rapid detection of metabolic 
patterns present within a blood sample [17, 18]. RS is a form of 
vibrational spectroscopy that works by using a laser to probe 
vibrational bonds present with a sample, thereby providing in-
formation about the chemical composition of a sample. Changes 
within spectra between serologically negative and positive sam-
ples can then be used to diagnose LD. It should be noted that in 
addition to LD, RS was used to diagnose numerous diseases in 
plants, animals, and humans. For instance, Farber and Kurouski 
showed that RS could be used to detect fungal infections in 
corn [19], while Sanchez et al. demonstrated that changes in the 
plant biochemistry caused by the gram-negative Candidatus 
Liberibacter spp. bacteria could be used to detect and identify cit-
rus greening disease [20]. Giuseppe et al. found that RS could be 
used to differentiate between healthy and Leishmania-infected 
dogs [21], whereas Vyas recently reported that changes in saliva 
probed by RS could be used to diagnose Sjögren's disease [22].

The approach presented in the current study is an expansion of 
our previous investigations [15, 16], which is focused on assessing 
our chemometrics model's capability when used with external 
validation of unidentified human blood samples. Specifically, we 
have collected spectra from a new set of 107 human blood samples 
obtained from anonymous donors. We built and evaluated three 
PLS-DA models that were first constructed using the spectra pre-
viously generated from the 90 human blood samples in our earlier 
study [16] and then refined by analyzing an additional set of human 
blood samples in the present investigation. These models were then 
either externally or internally validated against the second portion 
of unidentified human blood samples. We focused on PLS-DA due 
to the broad acceptance of this supervised classification method 
in the field of spectroscopy, as well as its low demand for compu-
tational resources. It should be noted that in comparison to other 
supervised classification algorithms, PLS-DA typically performs 
similarly or better than linear discriminant analysis (LDA) or soft 
independent modeling by class analogy (SIMCA) [23].

2   |   Methods

2.1   |   Blood Acquisition

A total of 107 human whole blood samples (EDTA tubes) were 
provided by the Lyme Disease Biobank (LDB) (Table  S1) [24]. 
Of the 107 specimens, 42 samples originated from LD patients, 
whose diagnosis was serologically confirmed by the two-tier sys-
tem or by 2 positive EIAs (LD-confirmed samples), and the other 
65 samples represented LD-free individuals, who tested negative 
by serology (controls). First, all 107 samples were coded by the 

LDB to mask their LD status (positive and negative control sam-
ples), which allowed us to perform the blind study in two steps. 
First, 26 specimens, which consisted of 7 LD-confirmed and 19 
control samples, were analyzed, and the results were submitted 
to the LDB for decoding. In our second blind study, the remain-
ing still-unrevealed 81 specimens (35 LD-confirmed and 46 con-
trol samples) were subjected to RS, after which the results were 
submitted to the LDB for decoding.

2.2   |   Spectroscopy

For use in RS, blood samples were thawed and vortexed before 
50 μL were spread onto aluminum foil-wrapped microscope 
slides and scanned directly wet [16]. Between 30 and 60 spectra 
were acquired from all 107 human blood samples. Spectra for the 
study were collected using a Nikon inverted confocal microscope 
(model TE-2000 U) equipped with the 20× dry Nikon objective; 
spectral acquisition time was 30 s per spectrum. Spectra were ac-
quired during 6 months. A 785 nm solid-state laser was directed 
toward the sample, passed through a 50/50 beam splitter, and 
then collected using backscattering geometry, with the Rayleigh 
scattering traveling through a long-pass filter (Semrock, LP03-
785RS-25) before finally entering an IsoPlane-320 spectrometer 
(Princeton Instruments) equipped with a 600 groove/mm grat-
ing. The collected light lastly entered the CCD detector (PIX-
400BR). The laser power was set to 8 mW for all acquisitions.

2.3   |   Chemometrics

PLS_toolbox (Eigenvector Research Inc) was used in MATLAB to 
perform all machine learning algorithms. All spectra were base-
lined using Automatic Weighted Least Squares with an eighth-
order polynomial and then background subtracted. This differs 
from the preprocessing done by Goff et al, who used a sixth-order 
polynomial [16]. Validation spectra were also smoothed using the 
Savitzky–Golay filter. The model spectra were averaged in groups 
of 2–12 and evaluated according to PLS-DA internal validation 
to improve the signal-to-noise ratio. The two groupings' aver-
ages with the best true positive rates (TPRs) for each model were 
then kept as preliminary Models A, B, and C. These six models 
were then compared against 81 unidentified human blood sam-
ples as external validation, and the three best models were kept 
as final Models A, B, and C. From binary comparison with the 
81 blood specimens, every sample was assigned a value between 
0 and 1 by each model. This value was used to determine if the 
model predicted a sample as positive or negative. After model 
completion, the status of each of the 81 samples was revealed, 
and all models were calculated for true positives, true negatives, 
false positives, and false negatives. All remaining model statistics 
were performed via formulas in Microsoft Excel.

3   |   Results

3.1   |   Raman Spectra

The Raman spectra collected from the blood contained peaks 
related primarily to heme (562, 676, 752, 962, 1226, 1376, and 
1532 cm−1), protein (1002, 1172, 1275, and 1340 cm−1), and other 
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aromatic molecules (1604 and 1622 cm−1). These peaks closely 
corresponded with the Raman spectra acquired from murine 
blood in our previous experiments [15, 16]. Small visual changes 
between the confirmed positive blood and the serologically neg-
ative blood could be observed throughout the spectra (Figure 1). 
Averaged Raman spectra of human blood samples with the 
mean and standard deviations for serologically negative or pos-
itive status are shown in Figure  S1. The largest changes were 
increases in the protein-related peaks (1275 and 1340 cm−1) 
correlating with positive infection, an increase in the heme-
related peak (1376 cm−1), and a decrease in the heme-related 
peak (562 cm−1), both correlated again with positive infection. 
Previously reported analysis of metabolic profiles of blood ob-
tained from early-stage LD patients using mass-spectroscopy 
revealed changes in the concentration of over 30 different bio-
molecules, including proteins, lipids, and their derivatives such 
as cholesterol, cholesteryl acetate, diacylglycerol, phospholipids, 
sphingolipids, and triglycerides [25].

3.2   |   Model Construction

Using our preliminary database of human blood scans, along 
with the new scans of the 107 human blood samples obtained in 
the present study, we have built three PLS-DA models to analyze 
RS's potential for accurate LD diagnosis (Figure 2). Model A was 
built first, using the 8198 spectra previously collected by Goff 
et al. [16]. This model was largely similar to the model reported, 
albeit with an alternative preprocessing of the spectra. Model B 
was built by adding in 1630 spectra from 26 of the now-classified 
samples to the spectra from Model A. Finally, Model C contained 
all 9828 spectra from Model B, along with 1785 spectra from the 
remaining 81 human blood samples. Models A and B had their 
performance externally validated against the unknown 81 blood 
samples, while Model C was only internally validated against 
the 81 samples due to being composed of spectra from all 107 
samples but was briefly externally validated using an 80/20 split 

of the spectra comprising the model. Additionally, Models A and 
B were trimmed at 1700 cm−1 to reduce noise and improve model 
performance. Model C performed well and was left untrimmed.

To improve the signal-to-noise ratio of the Raman spectra, each 
group was randomly averaged in groups of 2–12 spectra accord-
ing to their serological status (Figure 3, Table 1). For all models, 
as the grouping size increased, the TPR for spectral classification 
improved as determined by internal validation. TPR of spectra 
obtained from the negative controls trailed TPR of confirmed 
positive spectra in all instances. After TPR had been plotted, the 
two best-performing averaging sizes for all preliminary models 
were 9 and 11 spectra per averaging group. Both grouping sizes 
were externally validated for each preliminary model, and the 
stronger preliminary model was kept as our final Models A, B, or 
C. The three final models are based on the 9, 11, and 9 averaging 
groups, respectively, all of which had internally validated TPRs 
between 83% and 88%. Latent variables for each PLS-DA model 
were selected by plotting calculated and cross-validation classi-
fication errors for TPR against the number of latent variables. 
The latent variable with the lowest classification error and the 
lowest root mean square error of cross-validation (RMSECV) 
was then selected for the model. Final models of A, B, and C 
used 8, 15, and 13 latent variables, respectively.

3.3   |   Model Evaluation

After selecting the final models, Models A and B were exter-
nally validated using PLS-DA, while Model C was only inter-
nally validated (Figure  4, Table  2). The results for Model A 
showed a large selection bias towards negative predictions, 

FIGURE 1    |    Averaged Raman spectra of human blood samples with 
serologically negative or positive status for Lyme disease. Red bands in-
dicate heme-related peaks, blue bands indicate protein-related peaks, 
and yellow bands indicate aromatic-related peaks. FIGURE 2    |    Workflow of model design and evaluation.
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FIGURE 3    |    Relationship between group averaging size and true prediction rates for preliminary models as determined by internal validation.

TABLE 1    |    Relationship between group averaging size and true prediction rates for preliminary models as determined by internal validation.

Preliminary Model A Preliminary Model B Preliminary Model C

Group 
average 
size

Number of 
spectra

TPR 
(+)

TPR 
(−)

Number of 
spectra

TPR 
(+)

TPR 
(−)

Number of 
spectra

TPR 
(+)

TPR 
(−)

1 8198 77% 72% 9828 78% 69% 11 613 81% 72%

2 4098 78% 76% 4914 81% 73% 5805 83% 75%

3 2734 80% 78% 3275 83% 76% 3871 85% 78%

4 2050 82% 79% 2457 80% 78% 2904 85% 81%

5 1640 84% 76% 1967 82% 79% 2323 85% 80%

6 1367 83% 79% 1639 81% 80% 1937 85% 82%

7 1172 84% 83% 1405 82% 81% 1660 87% 83%

8 1025 85% 82% 1229 85% 81% 1452 86% 83%

9 912 88% 83% 1093 85% 81% 1291 87% 85%

10 820 87% 80% 984 85% 79% 1162 87% 85%

11 747 90% 85% 894 87% 83% 1057 88% 88%

12 684 87% 83% 819 83% 83% 969 87% 86%

FIGURE 4    |    Confusion matrices for Models A, B, and C. Color intensity represents classification accuracy given as the proportion of correct pre-
dictions relative to the actual diagnosis.
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while Model B showed much improved performance, with 
overall more true positives and true negatives than false posi-
tives and false negatives. Model C prediction was almost per-
fect, except for a singular false negative. Using the values in 
the confusion matrix, we calculated the sensitivity (recall) 
and specificity for the models, which evaluated the models' 
ability to correctly identify positive samples and negative sam-
ples, respectively. The large bias toward negative predictions 
from Model A results in a high specificity of 97.8%; however, 
this was offset by the incredibly low sensitivity of 8.6%. Model 
B, being composed of more spectra, had better sensitivity, and 
Model C had even more, leading to the conclusion that the 
models' sensitivity would continue improving as more spectra 
were given to it for training.

The positive predictive value (PPV or precision) and negative 
predictive value (NPV) indicate the likelihood that a positive or 
negative prediction in the model is correct.

Model B shows a significant improvement in NPV compared to 
Model A; however, its PPV is lower as a lack of confirmed pos-
itive assignments in Model A artificially inflated its PPV. Both 
values were near 100% in Model C. The accuracy parameter pro-
vides us with an understanding of the total correctness of the 
model across both positive and negative predictions. Here, we 
see clear improvements in model performance across Model A 
to Model B to Model C, indicating that the model becomes more 
accurate as it trains on more spectra.

In clinical diagnostics, both sensitivity and PPV are important 
metrics, and the F1 score combines these two values into one 
metric. The low sensitivity of Model A is reflected in its F1 score 
of 15.4%, but in Models B and C, the F1 score is at 62.3% and 
98.6%, reflecting the model's much greater diagnostic capabili-
ties. The Matthews correlation coefficient (MCC) measures the 
model's capabilities when accounting for all true and false pos-
itives and negatives. Neither Model A nor Model B performed 
very well in this regard, likely due to the higher amounts of 
false positives and false negatives. Finally, the Brier score pro-
vides insight into the model's confidence in binary classification 
assignment, with a score of 0 indicating complete confidence. 
From this, we can understand that Models A and B had a sim-
ilar amount of confidence (0.384 and 0.314) but that Model C 

had the strongest confidence (0.034) when making classification 
assignment.

When looking into how the model classifies spectra, we can 
measure the AUC (area under the curve) of the ROC (receiver 
operating characteristic) curve. By plotting the models' TPR 
and FPR across threshold levels from 0 to 1, we can evaluate 
the effectiveness of the model in class discrimination compared 
to random chance in what is called the ROC curve (Figure 5). 
The results of this curve show that the discrimination abilities of 
Model A are only slightly above random chance, while Model B 
has significantly better ability. Model C's ROC curve shows that 
the model had an almost near-perfect discrimination ability. To 
quantify these curves, we calculated the AUC for the models. 
These values reflect the previous assessment about the models' 
different discrimination abilities.

Finally, a major advantage of PLS-DA is the ability to plot load-
ings or latent variables from the model to understand how a 
decision is being made about class assignment (Figure 6). A la-
tent variable analysis (LVA) plot corresponding to the PLS-DA 
loadings for Model C is shown in Figure S2. Based on the first 
three latent variables for Model C, we can see that intensity at 
the 752, 1002, 1226, 1340, and 1376 cm−1 peaks, as well as the 
1562–1622 cm−1 region; all play key roles in the model's assign-
ment of classes. Taken together, these three latent variables con-
stitute 78.76% of the model's variance within class distinction.

4   |   Discussion

The results of this study align well with our previous studies 
and help visualize them in the context of LD diagnostics. The 
PLS-DA loadings highlight that changes in heme and protein 
content heavily contribute to the model's classification capa-
bilities, but that changes are not specific to any one metabolite. 

TABLE 2    |    Evaluation parameters for Models A, B, and C.

Model A Model B Model C

Sensitivity 8.6% 68.6% 97.1%

Specificity 97.8% 60.9% 100%

PPV 75% 57.1% 100%

NPV 58.4% 71.8% 97.9%

Accuracy 59.3% 64.2% 98.8%

F1 score 15.4% 62.3% 98.6%

Brier score 0.384 0.314 0.034

MCC 0.146 0.292 0.989

AUC 0.542 0.623 0.986

FIGURE 5    |    Receiver operating characteristic curve for Models A, 
B, and C.
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From a statistical viewpoint, it is clear Model A is not reliable in 
any capacity for LD diagnostics. This model is purely built from 
previously acquired human spectra, collected by different re-
searchers. The limitation of Model A, when externally validated, 
reflects the complexity of human blood and performing human 
diagnostics. This is most evident from the low F1 score and sen-
sitivity, despite high specificity and mediocre accuracy. This is 
even clearer when Model A's ROC curve is visualized, where the 
curve nears the line of random classification.

However, once Model A was expanded by the extra 26 samples to 
create Model B, we could see a clearly marked increase in model 
performance across most measures. Notably, Model B had large 
increases in F1 score and sensitivity, and the increase in accu-
racy to 64.2%. Similarly, the ROC curve and AUC of Model B 
show a clear improvement in discrimination ability, showing 
that the predictive capabilities of Model B are beyond random 
classification, unlike what can be said for Model A. From a clin-
ical standpoint, the improvements in sensitivity and NPV but 
decreases in specificity and PPV indicate the model's strength 
lies in identifying true positives and accurately predicting neg-
ative samples when they appear. However, while the model is 
adept at finding positives, it also classifies several negative cases 
incorrectly as positive, leading to the lower specificity and PPV. 
This reflects a bias towards positive detection, which is useful 
for minimizing missed cases but reduces confidence in positive 
predictions.

Finally, Model C was evaluated primarily using internal vali-
dation, as it included spectra from all available samples. Since 
Model C was built using a group averaging size of 9 with spectra 
randomly grouped by classification, the resultant training spec-
tra do differ from the original noisier spectra used for validation. 
Nevertheless, external validation was also performed for Model 
C using an 80/20 training/validation split of all spectra, giving 
TPRs of 92.7% and 87.3% for serological positive and negative 
spectra, respectively. Still, the strong performance of this model 
leads us to believe, that further external validation of this model 
using more clinical samples would lead to a better performance 

than that of Model B. Similarly, while Model B is not in a state 
ready for clinical implementation, the increases in performance 
as the model trains on more spectra indicate that stronger and 
more robust models can be built with access to more human 
blood samples.

The greatest limitation of results in this study was the number 
of samples available. With access to more samples, an opti-
mal study would be able to separate training, validation, and 
test sets to evaluate model performance. Similarly, the largest 
set of data (the 8198 original spectra) is singularly sourced, 
while the additions come from a separate source. Relying on 
one population source for samples can lead to a prediction bias 
that causes findings to be applicable to samples from another 
source, as can be seen in Model A. This is why, as more spec-
tra were added in from the new sample source, the model be-
came better at predicting the serological status of each sample. 
Therefore, a more optimal model should be developed with 
samples from a wide range of sources. This should be the pri-
mary focus of any future work aimed at fully developing an 
RS-based test for LD diagnostics.

5   |   Conclusion

In sum, this study demonstrates the potential of combining RS 
with PLS-DA for LD diagnostics. Our findings largely exhibit 
that model performance is tied both to the diversity and quantity 
of samples tested. Model A had low statistical reliability, likely 
due to its dependence on a single sample source, causing a bias 
toward negative predictions. Model B had marked improvements 
in sensitivity and predictive capabilities due to the inclusion of 
new samples. Model C had the greatest statistical performance 
but was only evaluated using internal validation. The models 
overall demonstrate the importance of sample variety and quan-
tity to improve diagnostic accuracy, and importantly stress the 
need for thorough external validation of built diagnostic models. 
Future efforts should focus on refining these models to bring RS 
closer to practical LD diagnostics.
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