
Food Chemistry Advances 4 (2024) 100698

Available online 16 April 2024
2772-753X/Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Nondestructive assessment of maturity in cantaloupe using Raman 
spectroscopy with carotenoids as biomarkers 

Ganga K. Sah a, Nicolas Goff b, Jashbir Singh a, Kevin M. Crosby a, Dmitry Kurouski b,*, 
Bhimanagouda S. Patil a,* 

a Vegetable and Fruit Improvement Center, USDA National Center of Excellence, Department of Horticultural Sciences, Texas A&M University, 1500 Research Parkway, 
Suite A120, College Station TX 77845-2119, USA 
b Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Blvd, College Station, TX 77845, USA   

A R T I C L E  I N F O   

Keywords: 
Raman spectroscopy 
Cantaloupe 
High-performance liquid chromatography 
(HPLC) 
Carotenoids 
Maturity 

A B S T R A C T   

Currently, there is no reliable, non-destructive way to assess the maturity of cantaloupes (Cucumis melo L.). Here, 
we investigated the extent to which Raman spectroscopy can be used to determine cantaloupe maturity. Five 
cantaloupe cultivars were grown and harvested at 13, 26, and 39 days after anthesis. Raman spectra from 
cantaloupes were acquired and partial least-square discriminant analysis (PLS-DA) was used to predict maturity 
based on the collected spectra. The PLS-DA model predicted maturity with up to 100 % accuracy in the cultivars 
studied. HPLC analysis of lutein and β-carotene in cantaloupe rind showed an increase in the concentration of 
carotenoids with maturity. The same trend was observed in the vibrational bands originating from carotenoids in 
the acquired Raman spectra. Based on this, Raman spectroscopy can primarily detect the changes of carotenoids 
in different cultivars of cantaloupe rind, which can be used for non-invasive and non-destructive assessment of 
fruit maturity.   

1. Introduction 

Cantaloupes (Cucumis melo L.) are climacteric fruits and belong to the 
Cucurbitaceae family. Fruits are generally harvested at maturity, based 
on their visual appearance, such as slip separation, netting turning from 
green to yellow, flower end softening, and their aroma (Beaulieu & Lea, 
2007). However, cantaloupe maturity is difficult to determine based on 
these criteria; indeed, mature and fully mature cantaloupes can have 
similar skin color (Quamruzzaman et al., 2022). Erroneous estimates of 
maturity can cause field losses of fruits and vegetables of around 20 % 
(Johnson et al., 2019), low quality, and lower consumer acceptance 
(Maietti et al., 2012). 

Cantaloupe is a rich source of phytochemicals such as carotenoids, 
especially β-carotene (a precursor of vitamin A), polyphenols, and fla
vonoids, which accumulate in pulp and rind during maturation, along 
with many other chemical changes (Gómez-García et al., 2021; Singh 
et al., 2022; Zhou et al., 2020). Carotenoids are responsible for the color 
and some health benefits of cantaloupes. Because they accumulate 
during ripening, carotenoids could be useful biomarkers for assessing 
cantaloupe maturity; however, measuring the carotenoid contents in 

fruits generally requires destructive techniques such as 
high-performance liquid chromatography (HPLC). For example, carot
enoids from the rind of cantaloupe fruits were extracted and measured 
using UV–visible spectrophotometry and HPLC (Benmeziane et al., 
2018). Another study predicted ripening and variety of cantaloupe using 
extracts and Fourier transform infrared spectroscopy (FTIR) and nuclear 
magnetic resonance (NMR) (Tristán et al., 2022). Moreover, carotenoid 
profiles in sweet orange were analyzed at different maturity stages using 
HPLC (Lux et al., 2019). HPLC can precisely measure carotenoids at low 
concentrations, but this technique is time-consuming, costly, involves 
toxic solvents, requires destruction of the melon, and is not suitable for 
field use (Bhatnagar-Panwar et al., 2015; Hara et al., 2021). 

To overcome the limitations of destructive techniques, scientists are 
exploring the use of non-destructive techniques such as spectroscopy 
and imaging (Pissard et al., 2021; Qin et al., 2011). Near-infrared (NIR) 
spectroscopy can be used to assess the composition and quality of 
products but it has low spectral resolution for aqueous samples because 
of the very strong infrared absorption of water (Yang & Ying, 2011). 
Another method, hyperspectral imaging, is costly and requires samples 
to be stationary. Therefore these techniques are unsuitable for real-time 
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in-field analysis (Manley, 2014). By contrast, Raman spectroscopy (RS) 
has been recently used by researchers as a non-destructive technique for 
evaluating the maturity of fruits and vegetables, identifying physiolog
ical conditions, measuring crop quality, and detecting biotic and abiotic 
stresses in plants (Dhanani et al., 2022; Farber et al., 2020; Goff et al., 
2022). 

RS has the potential to identify carotenoids based on their resonance 
or pre-resonance effects, and has been used to determine maturity in 
watermelon, differentiate olive fruit cultivars, and monitoring ripening 
of tomato fruits (Dhanani et al., 2022; Gouvinhas et al., 2015; Trebo
lazabala et al., 2017). RS was used to detect changes in carotenoids on 
the surface of watermelon at five different maturity stages and showed a 
decrease of carotenoids with maturity (Dhanani et al., 2022). Limited 
research has been conducted in fruits and vegetables with thick rinds 
(Arendse et al., 2018). For instance, non-destructive maturity detection 
using RS in pomegranate resulted in 100 % classification accuracy using 
SIMCA to discriminate immature and mature samples (Khodabakhshian 
& Abbaspour-Fard, 2020). Due to the strong electron-photon coupling in 
carotenoids, two bands in the 1100–1200 and 1500–1600 cm− 1 regions 
are strongly enhanced in the Raman spectra (Withnall et al., 2003). 
However, until now RS has not been used to determine maturity of intact 
cantaloupes. Therefore, we hypothesized that a portable handheld 
Raman spectrometer using carotenoids as a biomarker can rapidly pre
dict the maturity of cantaloupe. RS is a non-invasive and non-destructive 
technique that can be used to probe the chemical composition of 
analyzed specimens. It also has no interference with water, unlike FTIR. 
Finally, several companies make excellent hand-held Raman 

spectrometers that can be used to measure fruit quality directly in the 
field. 

The present study aimed to (i) apply non-destructive Raman spec
troscopy using carotenoids as a biomarker to determine the maturity of 
cantaloupe, and ii) compare the results obtained from RS with the HPLC 
results of carotenoids from the rind of cantaloupe. To our knowledge, 
this is the first report to employ a portable Raman spectrometer for non- 
destructive measurement of cantaloupe maturity. Since RS is portable, 
handheld, cost-effective, user and environment friendly, it has the po
tential to overcome the limitations of other destructive techniques. The 
approach used in this study will advance efforts to predict maturity in 
thick-rind fruits as cantaloupe, which can help in reducing fruit loss 
during harvesting. 

2. Materials and methods 

2.1. Plant materials 

Five cultivars of cantaloupe consisting of three experimental hybrids 
(TH5, TH6, and TH16) from the breeding program of Texas A&M Uni
versity, and two commercial varieties [Tuscan type Da Vinci (DV) and 
Harper type Infinite Gold (IG)] were cultivated in the research field in 
Snook, College Station, Texas. Seeds were sown in April 2021, and fe
male and perfect flowers (Fig. 1 A) were tagged on the day of anthesis 
and tagged fruits (Fig. 1 B) were harvested. Four fruits from each 
cultivar were harvested at three different maturity stages, i.e., 13, 26, 
and 39 days after anthesis (DAA) (Fig. 1 C). In total 60 cantaloupes were 

Fig. 1. A) Pictures of female and perfect flowers; B) Tagged fruits C) Harvested cantaloupes from hybrid (TH5) and commercial variety (Da Vinci) at 13, 26, and 39 
days after anthesis (DAA); D) Surface scan of Da Vinci using a handheld Raman spectrometer. 
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harvested, with 20 fruits harvested at each maturity stage. Fruit was 
harvested in the morning and transported to the Vegetable and Fruit 
Improvement Center (VFIC), Texas A&M University, College Station, 
Texas, scanned on the same day, and then processed for metabolite 
analyses. 

2.2. Chemicals and reagents 

Analytical grade acetone, chloroform, methanol, tert‑butyl methyl 
ether (TBME), β-carotene, and lutein, were acquired from Sigma-Aldrich 
(St. Louis, MO, USA). 

2.3. Raman spectral acquisition of cantaloupe 

Raman spectroscopy is a non-destructive analytical technique, that is 
based on the phenomenon of inelastic light scattering (Zeng et al., 
2021). A Handheld Resolve Raman Spectrometer (Agilent, USA) 
equipped with a 475 mW laser with a wavelength of 830 nm, and 1-sec 
integration time was used (Dhanani et al., 2022). It measures Raman 
shifts in the range of 200–2000 cm− 1 and was used for the acquisition of 
Raman spectra of cantaloupe cultivars at different maturity stages using 
surface scan mode. Fruits were washed with distilled water to remove 

dirt on the surface and dried using paper towels. For spectral acquisition, 
fruits were held close to the nose cone of the Raman spectrometer to 
allow the laser light to hit on the fruit surface, with care to avoid the 
netted area. Fruits were scanned using the surface scan mode available 
in the instrument (Fig. 1 D). Each fruit was scanned to get 8–10 clean 
spectra. The spectra were taken from the top, bottom, and middle sur
face of the fruit. Same method was used to scan β-carotene and lutein 
standards purchased from Sigma-Aldrich. 

2.4. Raman spectral data preprocessing 

The Raman spectrometer used for this study has built-in software for 
automatic baseline correction and background subtraction of the ac
quired spectra. The spectral data were exported from the handheld in
strument in comma-separated value (CSV) format and coupled with 
chemometrics and machine learning approaches for further pre
processing and analysis in the PLS_Toolbox in MATLAB 2020a. Raman 
spectra along with the chemical information of sample may also contain 
background and noise signals from sources such as instrument itself and 
the experimental operating environment. Therefore, to eliminate the 
interfering signals on the sample signal, the original data needs to be 
preprocessed (Zeng et al., 2021). Data normalization also referred as 

Fig. 2. Raman spectra in solid form A) Normalized averaged surface scan spectra of TH6 intact cantaloupe rind B) Lutein and β carotene standard.  
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data preprocessing which is very crucial as each normalization strategy 
has a significant impact on the data quality and distribution, and thus 
influences the biomarker detection for any biological study. Without 
proper normalization, the spectroscopic data can provide erroneous, 
sub-optimal data, which can lead to misleading and confusing biological 
results and thereby result in failed application of biological research 
(Misra, 2020). The spectral data in the present study was normalized at 
peak 1382 cm− 1, which originates from CH2 vibrations. Since this 
chemical group is present in nearly all classes of biological molecules, 
normalization on this peak is minimally biased for the assessment of the 
changes in intensities of other vibrational bands in the acquired Raman 
spectra. 

Optimal preprocessing for each cultivar was determined using the 
model optimizer tool. After pre-processing, partial least-squares 
discriminant analysis (PLS-DA) was performed to differentiate be
tween ripening stages for each of the five cultivars of cantaloupe. A 
confusion matrix was created from the PLS-DA classification model and 
used for the prediction of outcomes in the machine learning algorithm. 

2.5. Extraction and quantification of carotenoids from cantaloupe rind 
samples using HPLC 

Cantaloupe rinds were separated from the pulp using an Oxo vege
table peeler, and the thickness of the rind was about 3 mm. The rinds 
were cut into small pieces and blended for about 1 min (Oster blender 
with 12 speeds, 450 W). Carotenoids were extracted from the rind 
sample (3.0 gm) using 6 mL of chloroform (CHCl3): acetone [1:3 (v/v)] 
solvent. Two technical replicates per fruit were prepared (Blainey et al., 
2014). The mixture was homogenized, sonicated, vortexed, centrifuged, 
and then the filtrate was transferred into a 15-mL tube. The extraction 
process was repeated with the addition of 6 mL solvent to the sample 
residue to ensure complete extraction of the carotenoids, as described 
previously (Singh et al., 2021). The second filtrate was collected in the 
same 15-mL tube, 800 μL pooled filtrate was centrifuged and the clear 
supernatant was transferred into amber vials and subjected to HPLC 
analysis. 

Carotenoids were quantified using a YMC carotenoid C30 (250 × 4.6 
mm) column (YMC Co., Ltd. Japan) with a guard cartridge (Phenom
enex, Torrance, CA, USA) on an Agilent 1200 Series HPLC (Foster City, 
CA, USA). The mobile phase consisted of TBME (A), and methanol (B) 
and was used at the flow rate of 0.8 mL/min with 20 μL injection vol
ume. External standards were used to quantify β-carotene and lutein at 
450 nm wavelength as described previously with slight modifications 
(Singh et al., 2022). Gradient mode elution for the rind sample was 
carried out as follows: 0–3 min: 90 % B; 5 min: 85 % B; 14 min: 65 % B; 
16 min: 40 % B; 18 min: 20 % B; and 21–23 min: 90 % B bringing it back 
to initial condition. The column was equilibrated for 2 min before the 
next injection. Carotenoid results were expressed as µg/g fresh weight 
(FW) of the sample. The concentration of β-carotene and lutein was 
calculated by using standard calibration, and total carotenoid (TC) 
concentration was estimated by adding lutein and β-carotene. HPLC 
graphs were created by GraphPad Prism Version 9.5.0 and statistical 
analysis was performed using JMP software (JMP Pro 16 for Mac, SAS 
Institute, Cary, NC, USA) with one way ANOVA at the alpha level of 
0.05. Mean comparison for all pairs was done using Tukey-Kramer HSD 
test. 

3. Results and discussion 

3.1. Spectroscopic analysis of cantaloupe rind 

RS can specifically detect carotenoids in fruits and vegetables (Hara 
et al., 2021; Jehlička et al., 2014) which can be advantageous for 
assessing crop maturity (Saletnik et al., 2022). In the Raman spectra 
acquired from cantaloupe rind, vibrational bands were observed that 
can be assigned to carotenoids at 1002, 1155, 1186, 1217, and 1525 

cm− 1. There was an increase in the intensity of the carotenoid spectral 
peak from day 13 to day 39 in all cultivars, as shown by TH6 presented 
in Fig. 2 A and other cultivars in Supplementary Figure 1 (A-D). The 
carotenoid concentration was also reported to increase during the 
maturity period from green to yellow stage in jamun fruit and melon 
(Sharma et al., 2022; Vanoli et al., 2023). Our previous study of 
watermelon showed that carotenoid concentrations in the rind 
decreased as the fruits ripened, showing the importance of generating 
custom of RS profiles for individual fruits. 

The strongest carotenoid peak intensity observed at 1525 cm− 1 

originates from the C––C stretching vibration of the carotenoid mole
cule, Supplementary Table.1. The second strongest peak at 1155 cm− 1 

originates from C–C stretching vibration, and the third, medium- 
strength peak at 1002 cm− 1 originates from C–CH3 in-plane rocking 
vibration (Jehlička et al., 2014; Schulz et al., 2005). Finally, the last two 
carotenoid peaks located at 1186 and 1217 cm− 1 originate from C–C 
stretching vibration coupled either to the C–H in-plane bending or to 
the CH–CH3 stretching modes (Grudzinski et al., 2016). We also 
observed vibrational bands that originate from CH and CH2 vibrations at 
1326 and 1439 cm− 1. These chemical groups are present in nearly all 
classes of biological molecules and therefore cannot be assigned to the 
particular class of molecular analytes. 

In this study, two unique spectral bands were observed at 652 cm− 1 

and 848 cm− 1, which had higher intensity at day 39 as compared to day 
13 and day 26 in all the cultivars. Moreover, the spectral bands at 745, 
917, and 1326 cm− 1 present in all the cultivars of cantaloupe were re
ported as chlorophyll by other studies (Němečková et al., 2022; Trebo
lazabala et al., 2017; Vítek et al., 2010). 

Table 1 
Confusion matrix computed from the PLS-DA model of Raman spectra collected 
from five cantaloupe cultivars at three different stages of maturity.  

Cultivar Ripening 
stage 

Total 
spectra 

Actual 
day 13 

Actual 
day 26 

Actual 
day 39 

Accuracy 
of 
prediction 
(%) 

TH5 Predicted 
as Day 13 

41 40 2 0 97.5 

Predicted 
as Day 26 

39 1 37 0 94.8 

Predicted 
as Day 39 

25 0 0 25 100 

TH6 Predicted 
as Day 13 

42 40 2 0 95.2 

Predicted 
as Day 26 

40 2 38 0 95.0 

Predicted 
as Day 39 

26 0 0 26 100 

TH16 Predicted 
as Day 13 

39 34 2 0 87.1 

Predicted 
as Day 26 

41 5 39 0 95.1 

Predicted 
as Day 39 

30 0 0 30 100 

Da 
Vinci 

Predicted 
as Day 13 

24 24 2 0 100 

Predicted 
as Day 26 

40 0 37 5 92.5 

Predicted 
as Day 39 

29 0 1 24 82.7 

Infinite 
Gold 

Predicted 
as Day 13 

26 26 2 1 100 

Predicted 
as Day 26 

40 0 37 1 92.5 

Predicted 
as Day 39 

24 0 1 22 91.6 

Bold numbers are the highest number of spectra predicted according to their 
ripening stage. 
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3.2. Raman spectra of standard carotenoids 

To confirm the carotenoid peak obtained from cantaloupe rind, 
Raman spectra were acquired from lutein and β-carotene standards. The 
Raman spectra acquired from lutein exhibited distinct carotenoid peaks 
at 1005, 1155, 1184, 1215, and 1525 cm− 1 (Fig. 2 B top). Raman spectra 
acquired from standard β-carotene exhibited distinct carotenoid peaks at 
1005, 1154, 1184, 1215 and 1515 cm− 1 (Fig. 2 B bottom). In the ac
quired Raman spectra from the cantaloup rind, the carotenoid vibrations 
were centered at 1005, 1155, 1184, 1215, and 1525 cm− 1, which sug
gests that RS primarily detects changes in the concentration of lutein at 
1525 rather than β-carotene at 1515 in all cultivars of cantaloupe rind. 

3.3. Chemometric analysis of Raman spectra for predicting cantaloupe 
maturity 

PLS-DA was used to investigate the accuracy of differentiation 
among the maturity stages of cantaloupe fruits based on the acquired 
Raman spectra. Confusion matrix from the PLS-DA model revealed that 
RS can be used to predict the maturity of all varieties of cantaloupes with 
82–100 % accuracy, Table 1. Results from the present study indicate that 
Raman spectra can be used to differentiate the fully mature stage from 
the immature stages with 82.7 % accuracy for DV, 91.6 % for IG, and 
100 % for all the experimental hybrids (TH5, TH6 and TH16). It should 
be noted that similar results of ripeness prediction was reported for 

watermelons (Dhanani et al., 2022). Also, Raman spectra of potatoes 
grown in two different locations were differentiated using the PLS-DA 
model with an accuracy of 84.3 % and 90.9 %, respectively (Morey 
et al., 2020). The present study used ripeness stages that show clear, 
visible differences; future studies will examine fruits that are nearly ripe, 
perfectly ripe, and over-ripe to provide commercially useful data. 

Vibrational bands corresponding to specific chemicals present in the 
rind of cantaloupes are labeled and discussed in Supplementary Table 1. 
In Fig. 3, the loading plots for the main latent variables (LVs) represent 
the bands that mainly contributed towards the prediction of maturity in 
the classification models. In TH5, the LV1 alone explained 87.60 % of 
the variation among the maturity stages with the highest contribution of 
bands at 1002, 1155, and 1525 cm− 1 which correspond to carotenoid 
pigments. However, LV2 has the highest influence of bands at 652, 848, 
assigned to the aromatic ring, and 1155, and 1525 cm− 1. Similarly, in 
the other four cultivars (TH6, TH16, DV, and IG), the LV1 has maximum 
influence at 1002, 1155, and 1525 cm− 1 however, in TH16 the bands at 
745 and 1326 cm− 1 also made some contribution to explaining the 
variation towards the prediction of classification models. In IG, only two 
LVs explained most of the variation (LV1 47.28 % and LV2 48.09 %). 
Overall carotenoid bands mostly at 1002, 1155, and 1525 cm− 1 had 
higher contributions for the maturity prediction models, which is in line 
with the findings in watermelon and peanut (Dhanani et al., 2022; 
Farber et al., 2020). 

Fig. 3. Loading plots for the first three latent variables (LVs) obtained from the partial least square discriminant analysis (PLS-DA) model. LV1 (blue), LV2 (orange), 
and LV3 (yellow) represents the wavenumbers having the highest contribution to the maturity prediction model developed from the Raman spectra acquired from 
five cantaloupe cultivars A) TH5, B) TH6, C) TH16, D) Da Vinci, and E) Infinite Gold. 
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3.4. Quantification of carotenoids in cantaloupe rind using HPLC 

Carotenoids were quantified from cantaloupe rind samples using an 
optimized HPLC method. Lutein and β-carotene were the major carot
enoids present in the cantaloupe rind samples which ranged from 11.96 
to 41.51 μg/g FW and 4.58–12.72 μg/g FW, respectively (Fig. 4. A, and 
Fig. 4 B), and TC (lutein + β-carotene) (Fig. 4 C) ranging from 16.88 to 
54.23 μg/g FW, however traces of other carotenoids were below quan
tifiable level. The highest concentration of lutein, β-carotene as well as 
TC was observed in TH6 rind at day 39 while lutein and TC were lowest 
in IG at day 26 and β-carotene at day 13. Overall, an increasing trend of 
β-carotene, lutein, and TC was observed from day 13 to day 39, indi
cating an increase in carotenoids from the immature to mature stage, 
except for TH5, which had a lower concentration of lutein at day 39 as 
compared to day 13 and day 26 resulting in lower TC at day 39. This 
significantly lower TC in TH5 at day 39 as compared to other cultivars 
which can be due to varietal differences or environmental factors 
(Carvalho et al., 2013; Tadmor et al., 2010). As previously reported, 
accumulation of detectable amounts of carotenoids was also observed in 
melon rinds ranging from 17 μg/g FW in “’Noy Amid’ hybrid to 180 μg/g 
FW in ‘Tendral Verde Tardio’ hybrid (Tadmor et al., 2010). Carotenoids 
such as lutein and beta carotene in oriental melon rind has been 
analyzed and reported using HPLC (Tuan et al., 2019). Similarly, ca
rotenoids in cantaloupe pulp have been previously analyzed and re
ported from our lab (Singh et al., 2021, 2022). 

As was discussed above, RS detected vibrational bands that origi
nated from carotenoids. HPLC results showed that the concentration of 

carotenoids in cantaloupe increased with maturity. Expanding upon 
this, one can expect that RS could be used to track changes in the in
tensities of carotenoid vibrations, which, in turn, could be used to 
monitor fruit ripeness. The increasing trend of carotenoids peak in 
Raman spectra in all cultivars followed the trend of β-carotene, lutein, 
and TC concentration from HPLC except for the lutein and TC in TH5. 

4. Conclusion 

This study demonstrates the potential of RS as a rapid non- 
destructive technique to determine changes in carotenoids as a 
biomarker to predict maturity in cantaloupe fruit. The results indicate 
that RS coupled with chemometrics can predict maturity in cantaloupe 
with 82–100 % accuracy. There is a good increasing trend from day 13 to 
day 39 for carotenoids in Raman spectra and the total carotenoids 
determined using HPLC which is true for all cultivars except TH5. 
Further testing of this technique at a large scale, and different envi
ronmental conditions is warranted to enhance the validity of this in
strument to determine maturity in cantaloupes. Raman spectra in 
combination with chemometrics may have practical applications in in
dustry, grocery stores, research, and at the field level for carotenoid 
determination and maturity prediction in cantaloupes. 
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