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Non‑invasive identification 
of combined salinity stress 
and stalk rot disease caused 
by Colletotrichum graminicola 
in maize using Raman spectroscopy
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Food security is an emerging problem that is faced by our civilization. There are millions of people 
around the world suffering from various kinds of malnutrition. The number of people that starve 
will only increase considering the continuous growth of the world’s population. The problem of food 
security can be addressed by timely detection and identification biotic and abiotic stresses in plants 
that drastically reduce the crop yield. A growing body of evidence suggests that Raman spectroscopy 
(RS), an emerging analytical technique, can be used for the confirmatory and non-invasive diagnostics 
of plant stresses. However, it remains unclear whether RS can efficiently disentangle biotic and abiotic 
stresses, as well as detect both of them simultaneously in plants. In this work, we modeled a stalk 
rot disease in corn by inoculating the plant stalks with Colletotrichum graminicola. In parallel, we 
subjected plants to salt stress, as well as challenging plants with both stalk rot disease and salinity 
stress simultaneously. After the stresses were introduced, Raman spectra were collected from the 
stalks to reveal stress-specific changes in the plant biochemistry. We found that RS was able to 
differentiate between stalk rot disease and salinity stresses with 100% accuracy, as well as predict 
presence of both of those stresses in plants on early and late stages. These results demonstrate that 
RS is a robust and reliable approach that can be used for confirmatory, non-destructive and label-free 
diagnostics of biotic and abiotic stresses in plants.

Crop yield is determined by a large number of factors including plant genetics, irrigation and soil conditions. Fur-
thermore, crop yield can be reduced on up to 30% by various plant diseases, such as fungal and viral infections. 
Colletotricum graminicola is a fungus that infects maize stalk, which results in 5–20% corn yield loss in the U.S. 
alone1–3. One can expect that a confirmatory diagnosis of stalk rot can be used to enable site- and dose-specific 
application of fungicides, which, in turn, will allow for more efficient disease control and maximization of the 
corn yield4. Both PCR and ELISA can be used to detect fungal diseases5–7. These molecular techniques are highly 
specific and sensitive. However, both PCR and ELISA are time and labor consuming. Their costs vary between 
$20–30 per sample, which limits broad utilization of these molecular methods of analyses by farmers and plant 
pathologies5–7. A growing body of evidence suggests that imaging techniques, such as red–green–blue (RGB), 
hyperspectral imaging, and thermography can overcome these limitations8. Although required equipment for 
plant imaging is expensive, the direct cost of such imaging analysis is very low9. However, imaging techniques 
suffer from the lack of specificity since identification of the plant disease is primarily based on the change in the 
leaf color4. At the same time, numerous biotic and abiotic factors, such as drought and nitrogen deficiency, can 
result in the same visual changes in plant texture and coloration as the discussed above biotic stresses10. These 
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limitations of molecular and imaging techniques catalyzed the search for alternative technologies that can be 
used for confirmatory sensing of biotic and abiotic stresses in plants11–13.

Our own experimental findings, as well as scientific results reported by other groups show that Raman 
spectroscopy can be used for confirmatory, non-invasive and non-destructive surveillance of the plant health. 
In 2018, Farber and Kurouski demonstrated that using RS, four different fungal infections could be detected in 
maize kernels13. Several years later, we showed that citrus greening disease could be diagnosed in both oranges 
and grapefruits with nearly 100% accuracy14,15. Furthermore, it was shown that RS was capable of confirmatory 
differentiation between citrus greening disease and nutritional deficiency that caused the same yellowness of 
plant leaves14–16. Gupta and co-workers discovered that RS could be used for confirmatory detection of nitrogen 
deficiency in plants12, whereas recently Morey and co-workers found that RS was capable of highly accurate differ-
entiation between the drought and salinity stresses in peanuts17. However, it is unclear whether RS could be used 
to differentiate between biotic and abiotic stresses, as well as identify both of these stresses in the same plant18,19.

Recently, Higgins and co-workers demonstrated that RS could be used to differentiate between several biotic 
and several abiotic stresses in rice19. Spectroscopic analysis of plants revealed drastically different intensities of 
vibrational bands that originated from carotenoids. Higgins and co-workers also performed HPLC analysis of 
plant carotenoids to demonstrate that observed by RS changes in the concentrations of carotenoids indeed took 
place in plants. Their results revealed excellent correlation between RS-sensed and HPLC-determined levels of 
carotenoids in healthy plants, as well as plants infected by both biotic and abiotic stresses19.

Expanding upon this, we modeled stalk rot disease in corn by inoculation of corn stalks with C. graminicola 
(group 1). In the second group of plants, we modeled salinity stress by watering plants with 150 mM sodium 
chloride. Finally, the third group was exposed to both salinity stress and C. graminicola infection. We also grew 
corn at the same experimental conditions that was subjected to neither one of those stresses (control). Next, we 
collected Raman spectra from stalks of all four groups of plants on day 2, 4, 6, and 8.

Materials and methods
Plant and fungal materials.  Seeds of B73 maize genotype were planted with 4–6 seeds per pot in Metro 
Mix 360 RSi soil (Sun Gro Horticulture). After germination, maize seedlings were thinned to one plant per pot 
within the next two weeks. Maize was watered every 3–4 days and 20 g of Osmocote Blend 19-5-9 slow-release 
fertilizer (Everris NA Inc.) were applied to each pot at about two and six weeks after planting. C. graminicola 
(1.001 strain) was cultured from stock plates from the lab of Dr. Young-Ki Jo (Texas A&M University) on full 
strength potato dextrose agar for at least 14 days at 23–25 °C. Spore suspensions were prepared as previously 
described20. Inoculations were performed at the time point on which 50% of the plants silked (mid-silking). The 
bottom four internodes above the last node with brace roots were wounded with an 18G hypodermic needle 
inserted to 1/4 inch depth. Sterile cotton swabs were dipped in spore suspension of 1 × 106 spores/mL of C. 
graminicola and wrapped in place on the wound site with parafilm to create a humid chamber. Infections were 
allowed to progress to selected time points of 2, 4, 6 and 8 dpi. In total, 10 plants were analyzed per treatment 
group. In parallel, 10 B73 plants were subjected to watering with 150 mM sodium chloride to induce salinity 
stress. Finally, 10 plants were subjected to the salinity stress and inoculated with C. graminicola, as discussed 
above, while 10 untreated plants served as the control group.

Raman spectroscopy.  Raman spectra were collected from the surface of 2nd and 4th internodes with a 
hand-held Resolve Agilent spectrometer equipped with an 830-nm laser source. The following experimental 
parameters were used for all collected spectra: 1 s integration time, 495 mW power, and baseline spectral sub-
traction by device software. Fifty spectra were collected from each group of plants. Spectra shown in the manu-
script are raw baseline corrected, without smoothing.

Spectral data analysis.  Data preprocessing is an important preliminary step for the data analysis. Primar-
ily because during the acquisition of spectra, the acquired spectra are influenced by multiple sources of signal 
noise such as sample background and instrument performance which can lead to deterioration of the spectral 
data quality21. Preprocessing of spectra aims to eliminate or minimize the aforementioned impacts to enhance 
the multivariate regression, classification model, or exploratory analysis that will follow22. In this study, standard 
normal variate (SNV) was used as a preprocessing method for spectral analysis. SNV is normally considered as a 
scatter correction method that is designed to reduce the (physical) variability between samples caused by scatter 
or used to adjust for baseline shifts between samples22. The basic format of SNV is given below:

Here, a0 is the average value of the sample spectrum to be corrected, and a1 is the standard deviation of the 
sample spectrum. Data preprocessing represents the process of cleaning and preparing the data for classification 
or for prediction purposes.

Machine learning model.  In this work, we utilized partial least-squared discriminant analysis (PLS-DA). 
This supervised version of principal component analysis achieves dimensionality reduction with the informa-
tion of target variables together with the good insight into the causes of discrimination through weights and 
loadings that assists in conducting exploratory data analysis23. The PLS-DA analysis was performed with a total 
of 800 samples (Table 1) which were divided into two groups: calibration set and validation set. All calculations 
and data analyses were carried out using MATLAB 2022b (MathWorks, Inc., Natick, MA, USA).

(1)
xorg − a0

a1
.
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Permissions or licenses.  The authors have a permission to grow plants and collect plant materials accord-
ing to the policy of Texas A&M University. All methods were performed on plants, including the collection of 
plant material, comply with institutional, national, and international guidelines and legislation.

Results and discussion
In the Raman spectra acquired from the stalks of healthy corn, we observed rational bands that can be assigned 
to phenylpropanoids (1601–1627 cm−1) and which dominate the spectra. We also observed vibrational bands that 
can be assigned to pectin (742 cm−1), cellulose (520, 915, 1040, 1093 and 1121 cm−1), carotenoids (1525 cm−1), 
carboxylic acids (1698 cm−1), and aliphatic vibrations (1326, 1335, 1424, and 1460 cm−1) (Fig. 1A and Table 2).

Similar vibrational bands were observed in the Raman spectra acquired at day 2 from stalks of corn that were 
infected by C. graminicola, Fig. 1A. At the same time, we observed a small decrease in the intensities of most of 
vibrational bands compared to those observed in the Raman spectra of healthy corn. These results show that 
fungal infection causes substantial changes in the plant biochemistry, which are sensed by RS. These results are 

Table 1.   Summary of the data used for PLS-DA analysis.

Days

Number of samples

Control Fungus NaCl Fungus + NaCl

2 50 50 50 50

4 50 50 50 50

6 50 50 50 50

8 50 50 50 50
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Figure 1.   Raman spectra acquired from the stalks of corn plants exposed to salinity stress (NaCl), stalk rot 
disease (stalk rot), both salinity and stalk rot disease (Stalk rot + NaCl), as well as control plants (control) at day 
2 (A) and day 8 (B).
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in a good agreement with the previously reported results by Farber and co-workers40. Even greater magnitude 
of changes in the discussed above vibrational bands was observed for the spectra acquired from corn subjected 
to salinity stress and combined salinity and stalk rot disease. Specifically, we observed a drastic decrease in the 
intensity of phenylpropanoids, cellulose and lignin vibrations. We also found that intensity of pectin and car-
bohydrate bands increased in the spectra acquired from plants exposed to salinity stress and combined salinity 
and stalk rot disease compared to those observed in healthy plants and corn infected by C. graminicola. These 
results point to the drastically different response of corn to the discussed above biotic (C. graminicola) and salin-
ity stresses. Spectroscopic analysis of the same plants at day 8 after the initiation of the stresses revealed similar 
changes in the intensities of the vibrational bands compared to those observed at day 2, Fig. 1B. These results 
suggest that changes in plant biochemistry that were induced by these stresses persist overtime.

Next, we used PLS-DA, a chemometric method that allows for a quantitative assessment of the discussed 
above differences in the acquired Raman spectra. Specifically, PLS-DA model combined with SNV preprocessing 
was able to demonstrate 100% accurate differentiation between the control, salinity and C. graminicola stresses, 
as well as between the plants that were exposed to C. graminicola and salinity stresses together at day 2, 4, 6 and 
8, Table 3, Fig. S1 and Table S1.

In the previously study reported by our group, Farber and co-workers demonstrated that RS could be used 
to determine the extent to which different corn varieties were resistant to C. graminicola40. To demonstrate this, 
we correlated the size of lesions with the changes in the intensity of vibrational bands that could be assigned to 
carotenoids, phenylpropanoids and cellulose. We found that different varieties of corn, specifically B73, lox4-7 
and MP305, exhibited slightly different spectroscopic changes after infection with C. graminicola40. These results 
demonstrated that RS could be used for selection procedures for genetic improvement programs.

Conclusions
Our results show that RS is capable of 100% accurate differentiation between biotic (stalk rot disease) and abiotic 
stresses (salinity) in the same crop. Furthermore, RS can be used to detect presence of both of these stresses in 
corn and differentiate such combined biotic-abiotic stress from individual biotic and abiotic stresses. One may 
wonder whether RS could be used to differentiate between different biotic stresses. Recently reported results by 
Higgins and co-workers showed that RS could be used to differentiate between aphid stress and viral disease in 

Table 2.   Vibrational band assignments for wheat leaf spectra.

Band Vibrational mode Assignment

375 Associated with cellulose crystallinity Cellulose24

520 ν(C–O–C) Glycosidic Cellulose25

640 δ(C–C) Lignin26

742 γ(C–O–H) of COOH Pectin27

804 δ ring vibration Terpenes28

900 ν(C–O–C) In plane, symmetric Cellulose, lignin25

987 ν(CO)ring, ν(CC)ring, β(CCH) Carbohydrates29

1040 ν(C–O) + ν(C–C) + δ(C–O–H) Cellulose, lignin25

1093 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrates30

1121 ν(C–O) + ν(C–C) + δ(C–O–H) Carbohydrates30

1170 C–OH Lignin31

1202 Aromatic ring modes of phenylalanine and tyrosine Proteins32

1267 Guaiacyl ring breathing, C-O stretching (aromatic); –C = C– Lignin33, unsaturated fatty acids34

1326 δCH2 bending Aliphatics, cellulose, lignin25

1335 δ(CH2) + δ(CH3) Aliphatics35

1424–1460 δ(CH2) + δ(CH3) Aliphatics35

1525 –C = C– (in plane) Carotenoids36,37

1601–1627 ν(C–C) Aromatic ring + σ(CH) Lignin38,39

1698 COOH Carboxylic acids

Table 3.   Results of PLS-DA analysis results for control and stress groups.

Stress group accuracy Control Fungus NaCl Fungus + NaCl

Day 2 100% 100% 100% 100%

Day 4 100% 100% 100% 100%

Day 6 100% 100% 100% 100%

Day 8 100% 100% 100% 100%
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wheat18. The researchers also demonstrated that RS could disentangle between abiotic stresses, such as drought 
and nitrogen deficiency. The reported by Higgins and co-workers results of HPLC-based analysis of carotenoid 
profiles of wheat leaves from all those group of plants demonstrated that Raman-based identification of different 
biotic and abiotic stresses is based on the sensing of chemical profile of carotenoids, which are unique for differ-
ent biotic and abiotic stresses18. Although the current study is critically focused on elucidation of the feasibility 
of Raman-based differentiation between drought and stalk rot disease, as well as diagnostics of the dual stress in 
corn, the reported by Higgins and co-workers result suggest that RS could be used for differentiation between 
different biotic and abiotic stresses in corn.

Data availability
The data that support the findings of this study are available from Dr. Kurouski but restrictions apply to the 
availability of these data, which were used under license for the current study, and so are not publicly available. 
Data are however available from the authors upon reasonable request and with permission of Dr. Kurouski.
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