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1 | INTRODUCTION

There are more than 10 million people around the world
diagnosed with Parkinson's disease (PD), whereas the
number of Alzheimer disease (AD) patients is reaching

Dmitry Kurouski'*

Abstract

Abrupt aggregation of misfolded proteins is the underlying molecular cause of
Alzheimer disease (AD) and Parkinson disease (PD). Both AD and PD are
severe pathologies that affect millions of people around the world. A small
42 amino acid long peptide, known as amyloid  (Ap), aggregates in the frontal
cortex of AD patients forming oligomers and fibrils, highly toxic protein aggre-
gates that cause progressive neuron death. Similar aggregates of a-synuclein
(a-Syn), a small protein that facilitates neurotransmitter release, are observed
in the midbrain, hypothalamus, and thalamus of people with PD. In this study,
we utilized the innovative nano-Infrared imaging technique to investigate the
structural organization of individual Af and a-syn fibrils postmortem extracted
from brains of AD and PD patients, respectively. We observed two morphologi-
cally different A and o-Syn fibril polymorphs in each patient's brain. One had
twisted topology, whereas another exhibited flat tape-like morphology. We
found that both polymorphs shared the same parallel f-sheet-dominated sec-
ondary structure. These findings suggested that both fibril polymorphs were
built from structurally similar if not identical filaments that coiled forming
twisted fibrils or associated side-by-side in the case of straight AB and a-Syn
fibrils. Nano-Infrared analysis of individual protein aggregates also revealed
the presence of lipids in the structure of both twisted and tape-like a-Syn fibrils
that were not observed in any of the A fibril polymorphs. These findings dem-
onstrate that lipid membranes can play a critically important role in the onset
and progression of PD.
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40 million (Apetri et al., 2006; Chen et al., 2015;
Cremades et al., 2012; Hong et al., 2011; Kurouski
et al., 2015; Pieri et al.,, 2016; Wischik et al.,, 1985;
Wischik et al., 1988). PD is the fastest growing neurode-
generative pathology, projected to strike more than
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12 million people by 2040 worldwide. There are 60,000
cases of PD diagnosed annually in the United States, with
estimated costs that are upwards of 30 billion, whereas
AD is the sixth leading death cause in the United States
(Chiti & Dobson, 2017; Iadanza, Jackson, et al., 2018)
This makes effective neuroprotective treatments an
urgent and unmet need (Chiti & Dobson, 2017).

Although the exact cause of both AD and PD is
unclear, these pathologies are strongly associated with an
abrupt aggregation of misfolded proteins (Chiti &
Dobson, 2017). In the case of AD, 40 and 42 amino acid
long amyloid B (Ap) peptides (AP;_40 and AP;_4,, Tespec-
tively) aggregate forming first small prefibrillar oligomers
that propagate into amyloid fibrils (Apetri et al., 2006;
Chen et al., 2015; Chiti & Dobson, 2017; Cremades
et al, 2012; Hong et al., 2011; Iadanza, Jackson,
et al., 2018; Kurouski et al., 2015; Pieri et al., 2016). Both
oligomers and fibrils were found to be highly toxic to
neurons (Chen et al., 2015; Knowles et al., 2014). Solid-
state nuclear magnetic resonance and -cryo-electron
microscopy (cryo-EM) were able to resolve secondary
structure of several different AB;_4o and AB,_4, fibril poly-
morphs (Guerrero-Ferreira et al., 2018; Kollmer
et al., 2019; Kurouski et al., 2010; Kurouski, Deckert-
Gaudig, et al., 2014; Li et al., 2018; Tycko, 2011). Cryo-
EM also revealed substantial diversity of amyloid
structures, showing that the same protein sequence can
adopt different amyloid structures, leading to more fibril
structures than sequences (Gallardo et al., 2020; Iadanza,
Jackson, et al., 2018). These findings suggested that the
morphology of amyloid fibrils is determined by the num-
ber and arrangement of protofilaments and the structure
of the subunit itself, with variations in these factors
potentially affecting the onset and progression of amyloid
diseases (Iadanza, Jackson, et al., 2018; Iadanza, Silvers,
et al., 2018).

PD is linked to the abrupt aggregation of a-synuclein
(a-Syn), a small 14 kDa protein that regulates neurotrans-
mitter release by synaptic vesicles (Auluck et al., 2010;
Burré et al., 2010, 2014; Diao et al., 2013). Similar to Ap,
a-Syn aggregation yields small oligomers and fibrils
(Hoffmann et al., 2019; Vogiatzi et al., 2008). These toxic
protein aggregates are responsible for the onset and
spread of PD (Cascella et al., 2021; Colla et al., 2012;
Fusco et al., 2017; Yamada & Iwatsubo, 2018). Micro-
scopic examination of Lewy bodies, extracellular forma-
tions that appear in the midbrain, hypothalamus, and
thalamus upon PD, revealed the presence of lipid mem-
branes together with o-Syn fibrils (Rambaran &
Serpell, 2008; Wischik et al., 1985; Wischik et al., 1988).
These findings suggested that lipids could be involved in
a-Syn aggregation. It was also found that phospholipids,
the major constituents of the plasma membrane of

neurons, could alter the rates of protein aggregation
(Bodner et al., 2009; Bodner et al., 2010; Harayama &
Riezman, 2018; Iyer et al., 2016; Musteikyté et al., 2021).
Our group demonstrated that phospholipids not only
altered the rates of a-Syn aggregation but also uniquely
modified the secondary structure of the a-Syn oligomers
(Dou et al., 2021a; Dou & Kurouski, 2022). Furthermore,
we found that lipids were present in a-Syn oligomers
formed at the early stages of protein aggregation together
with phosphatidylcholine (PC) and phosphatidylserine
(PS; Dou et al., 2021a; Dou & Kurouski, 2022).

These conclusions were made by the direct structural
analysis of individual a-Syn oligomers using atomic force
microscopy Infrared (AFM-IR) spectroscopy. (Dou
et al., 2021a) AFM-IR is an emerging analytical technique
that can be used to unravel the secondary structure of
analyzed protein specimens (Dazzi & Prater, 2017; Dou
et al., 2020; Kurouski et al., 2020). AFM-IR allows for
positioning a metalized scanning probe at individual olig-
omers and fibrils. Next, the probe-sample junction is illu-
minated by pulsed tunable IR light, which induces
thermal expansions in the sample (Katzenmeyer
et al., 2013; Kurouski et al., 2020; Strelcov et al., 2017).
These thermal expansions are transduced by the scan-
ning probe and converted into IR spectra (Chae
et al., 2017; Schwartz et al., 2022), which, in turn, can be
used to determine the secondary structure and composi-
tion of the analyzed specimens (Dou et al., 2021b; Ramer
et al, 2018; Rizevsky & Kurouski, 2020; Ruggeri
et al., 2015, 2016, 2018, 2020). Using AFM-IR, Rizevsky
et al. (2022) found that PC, PS, and cardiolipin uniquely
altered the secondary structure of insulin oligomers and
fibrils. Furthermore, these lipids were found to be present
in the structure of insulin oligomers. Matveyenka
et al. (2022b, 2022d) also found that such oligomers
exerted significantly lower cell toxicity than insulin
aggregates grown in a lipid-free environment. These
results suggest that lipid-determined protein aggregation
can be a general phenomenon observed in many if not all
amyloid-associated proteins.

In this study, we utilized AFM-IR to examine the sec-
ondary structure of individual AB and o-Syn fibrils
extracted from the brain of different AD and PD patients.
In both AD and PD brains, we observed two fibril poly-
morphs with straight and twisted topologies. We also
found that these polymorphs shared a very similar if not
identical secondary structure that was dominated by a
parallel p-sheet. These results suggested that both poly-
morphs were grown from similar if not identical fila-
ments that coiled forming twisted fibrils or associated
side-by-side in the case of straight Ap and a-syn fibrils.
We also found that the secondary structure of such
ex vivo extracted AP and a-Syn fibrils were substantially
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different from their in vitro grown analogs. Finally, our
results revealed the presence of lipids in the structure of
both twisted and tape-like a-Syn fibrils that were not
observed in any of the analyzed A fibril polymorphs.

2 | RESULTS AND DISCUSSION

Morphological examination of amyloid aggregates
extracted from both AD and PD brains revealed the pres-
ence of two fibril polymorphs: twisted (T-fibrils) and
straight (S-fibrils; Figure 1). Both T-fibril and S-fibril
polymorphs had similar dimensions with heights ranging
from 6 to 14 nm (Figure S1).

Nanoscale Infrared analysis of A fibrils postmortem
extracted from the brain of an AD patient revealed that
both S-polymorphs and T-polymorphs exhibited IR spec-
tra with peaks at 1694 and 1661-1672 cm ', Figures 2
and S2. These peaks originated from antiparallel p-sheet
and unordered protein secondary structure, respectively
(Figure 2a,b; Dou et al., 2021a; Dou & Kurouski, 2022) In
the acquired AFM-IR spectra, we also found a peak at
1639 cm ! with a shoulder at 1625 cm ™!, which could be
assigned to a parallel $-sheet (Matveyenka et al., 2022c,
2022d) Finally, we observed vibrational bands that could
be assigned to amino acid side chains (1597-1580 cm ),
as well as amide II vibration of the peptide bond (1550-
1500 cm ™ *; Dou et al., 2020).

Quantitative fitting of acquired AFM-IR spectra
revealed that both S-polymorphs and T-polymorphs had

FIGURE 1 Atomic force
microscopy images of flat (a,c,e,
g,1,k) twisted polymorph (b,d.f,
h,j,]) extracted from Alzheimer
disease and (a-f) and Parkinson

disease (g-1) brains.

similar areas of the discussed above peaks (Figures 2c, S2,
and S3). These findings suggested that the secondary
structure of both polymorphs was very similar. Specifi-
cally, Ap fibril T-polymorphs were dominated with paral-
lel p-sheet (81%) with a small amount of antiparallel
f-sheet (3%) present in their secondary structure. We also
found that 16% of protein secondary structure of A fibril
T-polymorphs was occupied with unordered protein. Ap
fibril S-polymorphs possessed 84% of parallel and 2% of
antiparallel p-sheet with 13% occupied by unordered pro-
tein structure, Figure 2c. AFM-IR imaging revealed a uni-
form distribution of parallel p-sheet, unordered protein
secondary structure, and antiparallel p-sheet in both S-
polymorphs and T-polymorphs of A fibrils (Figure 2d-o).

We also found that Ap fibrils extracted from other
brains had similar secondary structure to the discussed
above S-polymorphs and T-polymorphs. Specifically, the
amount of parallel p-sheet in Ap T-polymorphs extracted
from another brain was 83% (Figure S4). These aggre-
gates possessed 2% antiparallel p-sheet and 15% of unor-
dered protein secondary structure. These results
suggested that structurally and morphologically similar
T-fibril polymorphs were formed in different individuals
upon AD. We also found that Af S-polymorphs extracted
from another brain possessed 82% of parallel and 2% of
antiparallel B-sheet together with 16% of unordered pro-
tein secondary structure. Thus, one could conclude that
the secondary structure of AP T-polymorphs remains
consistent between different individuals diagnosed
with AD.
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FIGURE 2

Averaged atomic force microscopy Infrared (AFM-IR) spectra acquired from ex vivo amyloid f§ (Ap) straight (S-fibril; a) and

twisted (T-fibril; b) polymorphs. Histogram (c) of relative contributions of parallel and antiparallel p-sheet and unordered protein. AFM (d,h,

1) images of S-fibril (d-g) and T-fibril (h-o) polymorphs with the corresponding nano-IR images that reveal the nanoscale distribution of

their parallel p-sheet (1630 cm!; e,i,m), unordered protein (1667 cm™ Y f,j,n) and antiparallel B-sheet (1694 cm ™Y g,k,0). Pink asterisk (*)

shows statistically significant level of differences between parallel p-sheet secondary structure content of S-fibrils and T-fibrils. *p < 0.05, Red

and orange “NS” demonstrate statistically insignificant differences between unordered and antiparallel $-sheet secondary structure content

of S-fibrils and T-fibrils, respectively. ANOVA with Tukey's HSD post hoc test was performed to determine statistical significance of different

protein secondary structures.

Nanoscale Infrared analysis of «a-Syn aggregates
extracted from PD brains revealed a predominance of
parallel p-sheet in both T-fibril and S-fibril polymorphs
(Figures 3a,b and S5). Specifically, these polymorphs pos-
sessed 67% and 63% of parallel B-sheet in their secondary
structure, respectively (Figure 3c). We also found that
both T-fibril and S-fibril polymorphs had significantly
greater amounts of antiparallel p-sheet (10%) in their
structure compared with AP aggregates (~2.5%). Finally,
T-fibril and S-fibril polymorphs of a-Syn possessed 23%
and 27% of unordered secondary structure, respectively.
This was significantly greater than the amount of unor-
dered secondary structure present in the corresponding
AP aggregates. It should be noted that similar to AP
fibrils, we observed a relatively uniform distribution of
parallel p-sheet (1630 cm '), unordered protein
(1667 cm™ '), and antiparallel p-sheet (1694 cm ') in both
T-fibril and S-fibril polymorphs of «a-Syn fibrils
(Figure 3d-o). Finally, we observed a vibrational band in
the AFM-IR spectra collected from both fibril poly-
morphs of a-Syn centered ~1728 cm ' (Figure 3a,b;
Matveyenka et al., 2022a; 2022c, 2022d; Zhaliazka &
Kurouski, 2023). This vibrational band originates from
the carbonyl vibration of lipids. We also utilized matrix-
assisted laser desorption/ionization (MALDI) to confirm
presence of lipids in the analyzed samples. MALDI

revealed presence of phosphatidylinositol, phosphatidyl-
ethanolamine, PC, PS, and other lipids the analyzed sam-
ples (Figure S6 and Table S1). Therefore, we can
conclude that in vivo formed a-Syn fibrils possess lipids
in their structure. This conclusion is in good agreement
with the experimental results reported by Dou et al.
(2021a) and Dou & Kurouski (2022) that demonstrated
the presence of lipids in «-Syn oligomers grown in the
presence of PC and PS.

Similar distributions of the discussed above protein
secondary structures were obtained in «a-Syn fibrils
extracted from two other PD brains. Specifically, we
found ~1728 cm ! band in AFM-IR spectra collected
from both T-fibril and S-fibril polymorphs of a-Syn fibrils
(Figure S5). These polymorphs exhibited 66% of parallel
and 11% of antiparallel p-sheet together with 23% of
unordered protein secondary structure. Based on these
results, we could conclude that T-fibril and S-fibril poly-
morphs of a-Syn fibrils had similar if not an identical sec-
ondary structure that was conserved between different
PD patients.

These results are in good agreement with experimen-
tal findings reported by Nafie and Lednev groups for
insulin and lysozyme aggregates (Kurouski et al., 2010,
2012; Kurouski, Lu, et al., 2014). Using vibrational circu-
lar dichroism and AFM, Kurouski, Lu, et al., 2014
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FIGURE 3

Averaged atomic force microscopy Infrared (AFM-IR) spectra acquired from ex vivo a-synuclein (a-Syn) straigh (S-fibril; a)

and twisted (T-fibril; b) polymorphs. Histogram (c) of relative contributions of parallel and antiparallel p-sheet and unordered protein. AFM
(d,h,l) images of S-fibril (d-g) and T-fibril (h-o) polymorphs with the corresponding nano-IR images that reveal the nanoscale distribution of
their parallel p-sheet (1630 cm™%; e,i,m), unordered protein (1667 cm™*; f;j,n) and antiparallel p-sheet (1694 cm™*; g,k,0). Pink asterisk (*)
shows statistically significant level of differences between parallel p-sheet secondary structure content of S-fibrils and T-fibrils. *p < 0.05, Red
and orange “NS” demonstrate statistically insignificant differences between unordered and antiparallel f-sheet secondary structure content
of S-fibrils and T-fibrils, respectively. ANOVA with Tukey's HSD post hoc test was performed to determine statistical significance of different

protein secondary structures.

showed that T-insulin and S-insulin, and lysozyme fibrils
were composed of the same filaments that were coiling
and breading in the case of T-fibrils and associating side-
by-side to form S-fibrils. Expanding upon this, we could
conclude that both T-polymorphs and S-polymorphs of
AP fibrils were built up from the same filaments that
were coiling to form T-fibrils and associated side by side
with other filaments to make S-fibril polymorphs. Our
results also showed that similar processes took place in
the case of a-Syn aggregation. Specifically, both T-fibril
and S-fibril polymorphs of a-Syn were built from the
same filaments that were coiling or associating side by
side to develop T-fibril and S-fibril polymorphs,
respectively.

The question to ask is whether in vitro aggregation of
both AP and o-Syn would yield morphologically, and
structurally similar protein aggregates compared with
those formed in vivo. To answer this question, we aggre-
gated both AP and a-Syn in vitro under commonly used
experimental conditions (Chen et al., 2015; Lomont
et al.,, 2018; Peralvarez-Marin et al., 2008; Sarroukh
et al., 2013; Vosough & Barth, 2021). Next, we utilized
AFM-IR to examine the morphology and secondary
structure of both Ap and a-Syn aggregates (Figure 4). We
found that in vitro AP formed fibrils did not have a
clearly defined twist. These fibrils possessed a signifi-
cantly lower amount of parallel B-sheet (68%) compared

with ex vivo extracted aggregates (80%). Furthermore,
in vitro, AP had a significantly higher amount of unor-
dered protein (27%) compared with ex vivo extracted
fibrils (16%), while the amount of antiparallel p-sheet
was similar (3%-5%) between these two different groups
of fibrils.

We also found that in vitro aggregation of o-Syn
yielded exclusively T-fibril polymorphs. Specifically, we
observed no S-fibrils present in analyzed protein samples.
These fibrils possessed a similar amount of parallel
p-sheet (68%) compared with ex vivo extracted aggregates
(65%). However, in vitro grown a-Syn fibrils had a signifi-
cantly larger amount of unordered protein secondary
structure (34% vs. 24%) and possessed a substantially
lower amount of antiparallel p-sheet (2% vs. 10%) com-
pared with ex vivo extracted o-Syn fibrils. We also
observed no carbonyl vibration of lipids in the AFM-IR
spectra acquired from in vitro grown o-Syn fibrils. These
results demonstrated that in vitro experiments may not
fully represent processes linked to the aggregation of mis-
folded proteins that are taken place in the human brain.

Nevertheless, AFM-IR analysis of both in vitro
formed and ex vivo extracted amyloid fibrils demon-
strated predominance of parallel p-sheet in their second-
ary structure. These results are in a good agreement with
the experimental findings reported by Eisenberg group
(Nelson et al., 2005; Nelson & Eisenberg, 2006a, 2006b).
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FIGURE 4 Averaged atomic force microscopy Infrared (AFM-IR) spectra acquired from in vitro amyloid p (Ap) (A) and a-synuclein

(a-Syn; b) fibrils. Histogram (c) of relative contributions of parallel and antiparallel p-sheet and unordered protein in ex vivo Ap and a-Syn,

as well as in vitro Ap and a-Syn fibrils. AFM (d,h,1) images of in vitro Ap (d-k) and a-Syn (1-o) fibrils with the corresponding nano-IR

images that reveal the nanoscale distribution of their parallel p-sheet (e,i,m), unordered protein (f,j,n) and antiparallel p-sheet (g,k,0). Pink

and red asterisks (*) show the significance level of differences between parallel f-sheet and unordered secondary structure content of ex vivo

and in vitro A fibrils, respectively. Purple and light blue asterisks (*) show the significance level of differences between unordered and
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*p < 0.05, **p < 0.01, **p < 0.001. ANOVA with Tukey's HSD post hoc test was performed to determine statistical significance of different

protein secondary structures.

X-ray spectroscopy and computational approaches used
by Eisenberg demonstrated that cross-p-sheet is the core
structure of amyloid aggregates (Eisenberg &
Sawaya, 2017a, 2017b; Sangwan et al., 2017).

3 | CONCLUSIONS

Nanoscale structural analysis of protein aggregates
extracted from brains of both AD and PD patients
revealed presence of two morphologically different fibril
polymorphs that have twisted and straight topologies. We
found that the secondary structure of T-polymorph and
S-polymorph of A fibrils is dominated by parallel p-sheet
(~83%) with some amount of antiparallel p-sheet (2%).
We also found that ~16% of T-polymorph and S-
polymorph of AP fibrils are occupied by unordered pro-
tein secondary structure. Similar to A, the secondary
structure of a-Syn T-polymorphs and S-polymorphs is
dominated by parallel p-sheet (~65%) with some amount
of antiparallel pB-sheet (10%). We also observed around
25% of the secondary structure of both T-polymorphs and
S-polymorphs of a-Syn fibrils occupied with unordered
protein secondary structure. In the AFM-IR spectra
acquired from ex vivo extracted a-Syn fibrils, we also
found the vibrational signature of lipids. These results

show that lipids are present in the structure of a-Syn
fibrils. These findings demonstrate that lipids can be
directly involved in o-Syn aggregation. Finally, our
results show that in vitro aggregation of both AP and
a-Syn results in structurally different protein aggregates
compared with those extracted from the human brain.

4 | MATERIALS AND METHODS

4.1 | Brain tissue samples

Frontal cortex of three clinically confirmed AD patients
(55-65 years) and the midbrain of three PD-confirmed
patients (50-80 years) were received from NIH NeuroBio-
Bank. All postmortem obtained brain samples were fresh-
frozen and were kept at —80°C before the fibril extraction.

4.2 | Fibril extraction

Fibrils were extracted from brain samples using a water
extraction protocol. Briefly, 250 mg of tissue material was
homogenized with a scalpel and washed five times with
0.5 mL of calcium tris buffer (20 mm Tris, 138 mm NaCl,
2 mm Tris, pH 8.0). During washing steps, gentle stirring
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of brain tissue was performed. Next, tissue samples were
centrifuged at 3100g at 4°C for 1 min. After the superna-
tant was removed, pellets were re-suspended in 1 mL of
freshly made 5 mg/mL Clostridium histolyticum collage-
nase (Sigma-Aldrich, St. Louis, Missouri) in tris calcium
buffer. After overnight incubation at 37°C in a horizontal
orbital shaker at 750 rpm, tissue samples were again cen-
trifuged at 3100g for 30 min at 4°C. The supernatant was
discarded. The retained pellets were homogenized in
0.5 mL of tris-ethylenediaminetetraacetic acid (EDTA)
buffer (20 mM Tris, 140 mM NaCl, 10 mM EDTA,
pH 8.0). After centrifugation for 5 min at 3100g and 4°C,
the pellet was carefully separated from the supernatant.
The pellet was homogenized in 0.5 mL of ice-cold water
and centrifuged at 3100g for 5 min at 4°C. After centrifu-
gation supernatant contain extracted fibrils sample.

43 | Dot western blotting

Dot western blotting was performed to confirm the pres-
ence of AP and a-Syn aggregates in extracted brain
material using the Bio-Dot Microfiltration Apparatus
(Bio-Rad, cat. No. 170-6545), as illustrated in Figure S7.
The nitrocellulose membrane (Bio-Rad, cat. No. 1620117)
was rehydrated with 100 pL of TBS buffer (pH 7.4) prior
to adding 200 pL of sample to each well. The samples
were incubated on the membrane for 60 min before being
drained from the apparatus. The membrane was then
blocked with 300 pL of 5% nonfat dry milk in 1xTBS
solution for 60 min, followed by two wash steps with
300 uL  of 1xTBS/Tween pH 7.6 (Bio-Rad, cat.
No. BUF028). Primary antibodies (Invitrogen Anti-p
Amyloid (Apetri et al., 2006; Auluck et al., 2010; Bodner
et al.,, 2009, 2010; Burré et al., 2010, 2014; Cascella
et al., 2021; Chae et al., 2017; Chen et al., 2015; Chiti &
Dobson, 2017; Colla et al., 2012; Cremades et al., 2012;
Dazzi & Prater, 2017; Diao et al., 2013; Dou et al., 2020,
2021a, 2021b; Dou & Kurouski, 2022; Eisenberg &
Sawaya, 2017a, 2017b; Fusco et al.,, 2017; Gallardo
et al., 2020; Guerrero-Ferreira et al., 2018; Harayama &
Riezman, 2018; Hoffmann et al., 2019; Hong et al., 2011;
Tadanza, Jackson, et al., 2018; Iadanza, Silvers,
et al., 2018; Iyer et al., 2016; Katzenmeyer et al., 2013;
Knowles et al., 2014; Kollmer et al.,, 2019; Kurouski
et al., 2010, 2012, 2015, 2020; Kurouski, Deckert-Gaudig,
et al., 2014; Kurouski, Lu, et al., 2014; Li et al., 2018;
Lomont et al., 2018; Matveyenka et al., 2022a, 2022b)
Monoclonal (GT622), Catalog no. MA5-36246; Millipore
Ms X a-Syn, cat. no. MAB5320) were added to the wells
at a final dilution ratio of 1:1000, followed by gravity fil-
tration and three wash steps with 300 pL of 1xTBS/
Tween pH 7.6. Secondary antibodies (Invitrogen Goat
Anti-Mouse IgG [H + L] DyLight 633 Conjugated, Ref

355,512) were added with a final dilution ratio of 1:1000,
followed by two wash steps with 300 pL of 1xTBS/Tween
pH 7.6. The membrane was then removed, dried for
5 min and imaged using the Amersham Imager 600 West-
ern Blot Imager (Amersham, UK).

44 | Protein aggregation

One milligram of human Af, 4, (Gene script Cat.
no. RP10017) was dissolved in 1 mL of HFIP (Across
organics, code 445820500). After the peptide was fully
dissolved, HFIP was evaporated under the N, stream.
The resulting protein film was dissolved in 6 M guanidine
chloride at 4°C. Next, 6 M guanidine chloride was
replaced with 20 mM PB pH 7.4 using a PD-10 desalting
column (Cytiva, Cat. no. 17085101) at 4°C to suppress
peptide aggregation. The final sample contained 60 pM of
APBi_42- The sample was incubated at 25°C under quies-
cent conditions for 48 h. In parallel, human recombinant
a-Syn (Anaspec, cat. no. AS-55555-1000) was dissolved in
20 mM PB pH 7.4 to obtain a 150 pM final concentration
of the protein. Samples were incubated at 37°C, 750 rpm
agitation for 5 days.

4.5 | Atomic force microscopy Infrared

Solutions (150 pL) of brain extracts and in vitro-prepared
protein aggregates in 20 mM PB pH 7.4 buffer were
placed on silicon wafers. After ~3 min of sample expo-
sure on a silicon surface, wafers were rinsed with DI
water and dried at room temperature. Nano-IR3 system
equipped with a QCL laser was used for AFM-IR imaging
and spectral acquisition (Bruker, Santa Barbara, Califor-
nia). Spectral resolution was 2 cm™'/pt; laser sweeping
speed was 230 kHz, and laser repletion rate was 3.12%.
No PLL was used for sample imaging. All spectra and
maps were obtained using contact-mode AFM tips
(ContGB-G AFM probe, NanoAndMore). In Analysis Stu-
dio 3.15, all raw spectra were smoothed with a 10-point
filter and then normalized by average area. Spectra were
fitted using GRAMS/AI™ Spectroscopy Software.
ANOVA (p < 0.05) with Tukey's HSD post hoc test was
used to determine statistical significance of the differ-
ences between in vitro and ex vivo Ap and aSyn fibrils.

4.6 | Matrix-assisted laser desorption/
ionization

Bruker ultraflextreme MALDI-TOF-TOF instrument was
used for analysis of lipids present in brain extract. For
performed experiments, 2,5-dihydroxybenzoic acid
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matrix prepared in 50% acetonitrile and 0.1% formic acid
was used.
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