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Amyloid formation is a hallmark of many medical diseases including diabetes type 2, Alzheimer’s and Parkinson
diseases. Under these pathological conditions, misfolded proteins self-assemble forming oligomers and fibrils,
structurally heterogeneous aggregates that exhibit a large variety of shapes and forms. A growing body of evi-
dence points to drastic changes in the lipid profile in organs affected by amyloidogenic diseases. In this study, we
investigated the extent to which individual phospho- and sphingolipids, as well as their mixtures can impact
insulin aggregation. Our results show that lipids and their mixtures uniquely alter rates of insulin aggregation
simultaneously changing the secondary structure of protein aggregates that are grown in their presence. These
structurally different protein-lipid aggregates impact cell viability to different extent while using distinct
mechanisms of toxicity. These findings suggest that irreversible changes in lipid profiles of organs may trigger
formation of toxic protein species that in turn are responsible for the onset and progression of amyloidogenic

diseases.

1. Introduction

Amyloid diseases are a large group of severe pathologies that share a
common feature, namely the presence of deposits of misfolded proteins
within the body [1-3]. Misfolded proteins self-assemble forming oligo-
meric species that exhibit a large variety of forms and shapes [4,5].
Protein oligomers exert high cell toxicities and play a significant role in
the spread of pathologies throughout the body [4,6-11]. They also
propagate into insoluble amyloid fibrils, rod-like aggregates with cross-
B-sheet secondary structure [10,12]. Cryo-electron microscopy and
solid-state nuclear magnetic resonance (ss-NMR) resolved the secondary
structure of amyloid fibrils [13-15]. However, the transient nature of
oligomers and their morphological heterogeneity limit the use of these
classical methods of structural biology for elucidation of the oligomers’
structural organization [16]. To overcomes these limitations, several
groups proposed an elegant approach that allow for trapping these
oligomers [17,18] For instance, Barghorn et al. discovered that stable
homogeneous amyloid p1-42 peptide (Ap1-42) oligomers could be
formed if the monomeric peptide was aggregated at low concentrations
of sodium dodecyl sulfate (SDS) [19]. Similar findings were reported by
Serra-Batiste et al. that observed growth of detergent-stabilized Ap1-42

oligomers in the presence of dodecyl phosphocholine (DPC) micelles
[20]. Although such aggregates exerted cell toxicities, their structural
relevance to the native oligomers formed in the absence of detergents
remains unclear.

Scanning probe techniques, such as high-speed AFM (HS-AFM)
[21,22], as well as optical nanoscopy approaches, such as atomic force
microscopy Infrared (AFM-IR) spectroscopy [23-27] and tip-enhanced
Raman spectroscopy [28-32] can be used to overcome these limita-
tions. For instance, HS-AFM was able to reveal structural trans-
formations in islet amyloid precursor peptide (IAPP), Afj 42 and
a-synuclein (a-Syn) that lead to fibril formation [21,33,34]. These pro-
teins that are directly linked to diabetes type 2, Alzheimer’s and Par-
kinson diseases, respectively. Furthermore, HS-AFM revealed two
aggregation mechanisms of AB;_4o that led to formation of straight and
spiral fibrils [22]. Using NMR, AFM, mass spectroscopy, and computa-
tional simulations, Wei et all found that in solution IAPPs rapidly
aggregated into transient dimers and trimers that slowly propagate into
higher-order spherical oligomers and elongated fibrils [35]. These
findings can help to find targeted therapeutic strategies to block protein
aggregation at the early stages.

In AFM-IR, a metalized scanning probe is positioned above the
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sample of interest that is illuminated by pulsed tunable IR light [36-38].
IR-induced thermal expansions in the sample are recorded by the
scanning probe [39,40]. If a resonance frequency of the scanning probe
matches the laser frequency, appearing resonance effect enables single-
monolayer and even single-molecule sensitivity [41,42]. This high
sensitivity and nanometer spatial resolution made AFM-IR highly
attractive for structural analysis of wide variety of samples: amyloid
fibrils, [23,25,26,43-45] plant epicuticular waxes [46,47], polymers
[48], malaria infected blood cells [49], meteorites [50], bacteria
[51-53], liposomes [54] and polycrystalline perovskite films [55].

Using AFM-IR, our group was able to determine structural changes
that take place upon aggregation of a-Syn [27]. Zhou and co-workers
found that a-Syn forms two types of oligomers at the early stages of
aggregation: one dominated by a-helical/unordered structure and one
mostly composed of antiparallel- and parallel-p-sheet. The first type of
oligomers remain unchanged during the course of protein aggregation,
whereas antiparallel p-sheet rearrange into parallel-B-sheet secondary in
the second type of oligomers upon their propagation into fibrils [27].

A growing body of evidence suggests that a large number of bio-
logical molecules can uniquely alter rates of protein aggregation and
modify toxicity of oligomers and fibrils.[56-58] For instance, Cataldi
and co-workers showed that 3,4-dihydroxyphenylacetaldehyde, a
product of dopamine oxidation, alters the secondary structure of amy-
loid B oligomers and increases their toxicity significantly [56]. Gal-
vagnion and co-workers found that lipids either accelerate or decelerate
the rate of a-Syn aggregation. This effect is determined by the chemical
structure of the lipid, as well as lipid to protein ratio [59-61]. Our group
found that lipids not only alter the rates of a-Syn aggregation but also
uniquely modify secondary structure of protein oligomers [5]. Similar
observations were reported by Zhang et al. for IAPP [62]. Specifically,
the researchers showed that low levels of anionic lipids promoted IAPP
aggregation and enhanced membrane permeabilization potential of
these aggregates. At the same time, zwitterionic lipid did not alter the
rate of IAPP aggregation, whereas cholesterol at or below physiological
levels significantly decelerated IAPP amyloid formation, as well as
lowered the propensity of IAPP aggregates to cause membrane leakage.
Lipids can also uniquely alter the structure of amyloid p1-40 (Ap1-40)
aggregates [63]. A critical question is whether this lipid-mediated effect
on structure and aggregation kinetics is unique to o-Syn, IAPP and
AB1-40 or whether it is a general phenomenon applicable to a large
group of amyloid-associated proteins.

Insulin is a small hormone that regulates glucose metabolism. If
present at high concentrations, insulin forms oligomers and fibrils
[30,64]. Insulin aggregation is associated with diabetes type 2, a severe
pathology characterized by a suppressed response of cells to insulin
[65]. As a result, an overproduction of insulin takes place in the
pancreas, triggering insulin misfolding and aggregation. Similar pro-
cesses are observed upon injection-induced amyloidosis [66,67]. In this
case, injection if a high local concentration of insulin in the skin dermis
and subcutaneous fat triggers the formation of fibrils [68]. These fibrils
in turn may trigger the aggregation of other proteins, a phenomena
which results in systemic amyloidosis [69]. In the subcutaneous fat,
injected insulin is exposed to lipids, including the phospholipids,
ceramides and sphingolipids found in the membranes of cells [70].
Phosphatidylcholine (PC), phosphatidylserine (PS), cardiolipin (CL),
ceramide (CER) and sphingomyelin (SM) also occupy significant part of
the lipid membranes in most of eucaryotic cells [70-73]. Specifically, PC
is the most observed lipid that takes up to 47 % of the membranes,
whereas the ~10 % of the organelle and plasma membranes are occu-
pied by PS. Although the contributions of CER and SM are smaller, these
lipids take up to 6 % and 4 % of eukaryotic plasma membranes,
respectively. CL is unique to the inner mitochondrial membranes where
it where it constitutes about 20 % of all present lipids. It should be noted
that all chosen lipids for this work possessed Ci4-C1g saturated fatty
acids (FA). Although lipids with unsaturated FA also play an important
role in membrane biophysics, elucidation of their impact on insulin

BBA - Molecular and Cell Biology of Lipids 1868 (2023) 159247

aggregation is the subject for a separate study. Therefore, in our study
we tested the effect of these lipids, as well as their mixtures, on insulin
aggregation. Our findings show that lipids uniquely alter rates of insulin
aggregation. Furthermore, lipids modify the morphology and secondary
structure of insulin aggregates. Such aggregates exert significantly lower
cell toxicities than insulin aggregates grown in the lipid-free
environment.

2. Results
2.1. Kinetics of insulin aggregation

We first examined the extent to which lipids can alter the lag-phase
and rate of insulin aggregation. For this, insulin was mixed in 1:1 M ratio
with PC, PS, CL, SM and CER. The solutions were mixed with ThT and
kept at 37 °C under 510 rpm agitation. Insulin aggregation in the lipid-
free environment had a well-defined lag-phase that was followed by a
rapid increase in the ThT intensity, which indicated a formation of
protein aggregates, Fig. 1. We found that lipids can either shorten or
delay the lag-phase (tjag) of insulin aggregation (tjag = 14.4 & 0.8 h),
Table S1 and Fig. S1. Specifically, CL (tjag = 3.2 £ 0.5 h), CER (tj53 = 7.7
+ 0.5 h) and PS (tjag = 8.2 + 1.0 h) substantially shortened, whereas SM
delayed the lag-phase (tjag = 23.5 £ 1.0 h). We also observed no changes
in ThT intensity for Ins:PC, which suggests that PC strongly inhibits
insulin aggregation. These findings show that lipids can both shorten
and delay the lag-phase of insulin aggregation.

Next, we aimed to reveal the extent to which the effect of CL, which
caused the most substantial shortening of the tj,q, can be reduced by PC,
the lipid that strongly inhibited fibril formation. For this, we aggregated
insulin the presence of a mixture of PC and CL at 50:50 and 80:20 M
ratios (Ins:PC:CL (1:0.5:0.5) and Ins:PC:CL (1:0.8:0.2), respectively). If
tlag for Ins:CL was 3.2 + 0.5 h, tj5¢ for Ins:PC:CL (1:0.5:0.5) was 6.8 +
1.7 h. These findings confirm our hypothesis that presence of PC inhibits
acceptation effect of CL on insulin aggregation. We also found that an
increase in the relative concentration of PC relative to CL (Ins:PC:CL
(1:0.8:0.2)), similarly to PC itself, resulted in the full inhibition of insulin
fibril formation.

We have also found that lipids can uniquely alter the rate of insulin
aggregation. We found that CL (t;2 = 6.4 + 0.3 h), CER (t;,2 = 11.4 +
1.0 h), PS (t 2 = 10.9 % 0.6 h) and Ins:PC:CL (1:0.5:0.5) (t; /5 = 9.5 &
2.9 h) substantially accelerated the rate of protein aggregation (Insulin
t1/2 = 18.1 £+ 0.4 h), Table S1 and Fig. S1. However, SM (t,5 = 25.5 +
0.4 h), on the opposite, decelerated the rate of insulin aggregation.
These findings show that lipids uniquely alter both a lag-phase and the
rate of insulin aggregation.

2.2. Morphological analysis of insulin aggregates

We utilized AFM to investigate a morphology of insulin aggregates
grown in the presence of lipids, as well as in the lipid-free environment,
Fig. 2. We found that in the lipid-free environment (Ins), insulin formed
prolong fibrillar assemblies with a large distribution of lengths that had
on average 12 nm in height, Fig. 2 and Figs. S2-S3. In the presence of CL
(Ins:CL), insulin aggregation yielded short (30-60 nm) spherical ag-
gregates and ~ 200 nm long fibrils that had 6-8 nm in height. Similar
aggregates have been observed for Ins:CER, Ins:PS and Ins:SM (6-12 nm
in height). In the presence of PC, insulin formed only small (4-6 nm in
height) oligomers. Aggregates with similar morphologies and di-
mensions were found for Ins:PC:CL (1:0.8:0.2) together with short,
fibril-like structures. An increase in the concentration of CL relative to
PC (Ins:PC:CL (1:0.5:0.5)), resulted in formation of short (40-70 nm)
spherical aggregates and 90-160 nm long fibrils that have ~12 nm in
height. These aggregates had similar topologies with those formed by
insulin in the presence of CL itself. Summarizing, we can conclude that
in the lipid-free environment, insulin aggregates into long fibrils,
whereas in the presence of PS, CL, SM and CER short fibrillar species
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Fig. 1. Lipids uniquely alter the rate of insulin ag-
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Fig. 2. Lipids uniquely alter morphologies of insulin aggregates. AFM images of Ins aggregates, Ins:PS, Ins:PC, Ins:CL, Ins:PC:CL (1:0.5:0.5), Ins:PC:CL (1:0.8:0.2),
Ins:SM and Ins:CER. After 24 h of incubation of insulin (400 uM) with and without lipids at 37 °C under 510 rpm, sample aliquots were diluted with 1xPBS pH 3.0 and
deposited onto pre-cleaned silicon wafer. AFM imaging was performed in tapping mode. Scale bars are 2 pm for the first and third rows and 200 nm for the second
and forth rows.
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together with spherical oligomers are grown. In the presence of PC,
insulin forms only small oligomers. This inhibitory activity of PC is also
evident from a comparison of aggregates observed for Ins:PC:CL
(1:0.5:0.5) and Ins:PC:CL (1:0.8:0.2). An increase in the concentration of
PC in the lipid mixture decreases the yield of fibrils and increases the
amount of spherical oligomers. These findings show that lipids either
significantly alter morphologies of protein fibrils (CL, PS, SM and CER)
or strongly inhibit fibril formation (PC).

2.3. Structural characterization of protein aggregates

We utilized CD and ATR-FTIR to examine the secondary structure of
insulin aggregates grown in the presence of lipids, as well as in the lipid-
free environment. CD spectra of Ins, Ins:CER, Ins:PS, Ins:CL, Ins:SM, as
well as Ins:PC:CL (1:0.5:0.5) exhibited a trough at ~225 nm, which
indicates the dominance of p-sheet in their secondary structure, Fig. 3
and Table S2 [74,75]. However, Ins:PC and Ins:PC:CL (1:0.8:0.2) had
drastically different CD spectra with two troughs at 209 and 222 nm.
Such spectra are characteristic to proteins with a mixture of a-helical
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and unordered secondary structures, Fig. S2 [74,75].

ATR-FTIR spectra collected from Ins:PC and Ins:PC:CL (1:0.8:0.2)
aggregates exhibited the amide I at ~1657 cm ™, Fig. 3. This observa-
tion demonstrates that Ins:PC and Ins:PC:CL (1:0.8:0.2) have primarily
a-helix and unordered protein secondary structure. [76,77] In the
spectra collected from Ins:CER, Ins:PS, Ins:CL, Ins:SM, as well as Ins:PC:
CL (1:0.5:0.5), the amide I was centered at ~1631 cm™ !, which indicates
the dominance of parallel -sheet secondary structure in these protein
aggregates [76,78]. We have also found that ATR-FTIR spectrum of Ins
aggregates exhibited amide I at 1628 cm ™. This finding points on the
substantial structural difference between the parallel §-sheet secondary
structure in insulin aggregates grown in the lipid-free environment and
the aggregates grown in the presence of lipids. Finally, we observed a
shoulder at 1657 cm ™! in the amide I region of the spectra collected form
Ins, Ins:CER, Ins:PS, Ins:CL, Ins:SM, as well as Ins:PC:CL (1:0.5:0.5). This
points out on the presence of unordered protein secondary structure in
all insulin aggregates [27,79].

One may expect that differences in the structural organization be-
tween aggregates that were grown in the presence and absence of lipids
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Fig. 3. Structural analysis of insulin aggregates. CD (left) and ATR-FTIR (right) spectra of insulin aggregates (Ins) grown in the lipid-free environment (red), Ins:CER
(green), Ins:CL (blue), Ins:PC (gray), Ins:SM (yellow), Ins:PS (brown), Ins:PC:CL (1:0.5:0.5, navy) and Ins:PC:CL (1:0.8:0.2, purple). After 24 h of incubation of insulin
(400 pM) with and without lipids at 37 °C under 510 rpm, triplicates of samples were diluted with 1xPBS pH 3.0 and placed into quartz cuvette (CD) or directly
deposited onto ATR crystal (ATR-FTIR) and dried under room temperature. For each of the presented traces, three independent CD or ATR-FTIR measurements were
averaged. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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can arise from a presence of lipids in such aggregates. ATR-FTIR is
insufficient to examine the presence of lipids in the aggregates because if
lipid vibrations are observed in the corresponding spectra, we cannot
unambiguously determine whether lipids are integrated in the aggre-
gates or simply co-present with such protein aggregates. To overcome
this limitation, we used AFM-IR. AFM-IR allows for a direct visualization
individual protein aggregates simultaneously enabling their structural
analysis. [5,25,26,80]

AFM-IR spectra collected from individual protein aggregates that
were grown in the presence of lipids exhibited vibrational bands
centered ~800 and 1000-1200 cm ™, Fig. 4. These vibrational bands
correspond to C—H and PO; vibration respectively [80]. We have found
that Ins:PS, Ins:PC, Ins:CER and Ins:CL exhibited very strong intensities
of ~800 and 1000-1200 cm ! bands. This finding point on the presence
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of a significant amount of lipids in their structure. We also found that
intensities of 1000-1200 cm ™! bands were substantially lower in the
spectra collected from Ins:PC:CL (1:0.5:0.5) and Ins:PC:CL (1:0.8:0.2)
comparing to the intensities of these bands in the spectra collected from
Ins:PS, Ins:PC, Ins:CER and Ins:CL. Previously, we have demonstrated
that intensity of POy vibration directly depends on the local environ-
ment of the lipid head groups. Thus, our AFM-IR results show that the
underlying lipid-protein structure of Ins:PC:CL (1:0.5:0.5) and Ins:PC:CL
(1:0.8:0.2) are drastically different from both Ins:PC and Ins:CL.
AFM-IR analysis of Ins:SM showed significant variability in the in-
tensity of the acquired spectra. In some of the collected spectra in-
tensities of ~800 and 1000-1200 cm ™! vibrations were low whereas in
other spectra these bands very found to be very intense. Such fluctua-
tions in the intensities of the vibrational bands point on structural
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Fig. 4. Nanoscale analysis of lipid content of insulin aggregates. AFM-IR spectra of insulin aggregates grown in the absence of lipids (Ins) and in the presence of PS,
PC, CL, as Ins:PC:CL (1:0.5:0.5), as Ins:PC:CL (1:0.8:0.2), SM and CER. Spectra collected from individual aggregates are in gray, whereas the corresponding average
spectra are in red. After 24 h of incubation of insulin (400 uM) with and without lipids at 37 °C under 510 rpm, sample aliquots were diluted with 1xPBS pH 3.0 and
deposited onto pre-cleaned silicon wafer. AFM-IR analysis was performed in contact mode. At least 30-40 individual aggregates were analyzed for each sample. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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heterogeneity of Ins:SM aggregates. We found that spectra predomi-
nantly collected from small spherical aggregates exhibit intense ~800
and 1000-1200 cm™! vibrations, whereas AFM-IR spectra collected
from fibrils often showed low intensities in these regions. This obser-
vation shows that lipids primarily present in the pre-fibrillar aggregates
and are rarely observed in fibrils. This finding is in a good agreement
with previously reported results by our group, as well as other re-
searchers. Specifically, Galvagnion and co-workers hypothesized that
proteins utilize lipid layers for their assembly [60,81]. Using AFM-IR,
our group showed that such assembly is driven by lipids that form
complexes with proteins. [5] Such complexes yield structurally and
morphologically different fibrils. AFM-IR results reported in the Fig. 4
confirm that lipids present in all of the analyzed insulin aggregates that
were grown in the presence of lipids. We infer that presence of lipids in
such aggregates and unique lipid-protein complex play a critically
important role for their toxicity.

2.4. Toxicity of insulin aggregates

We utilize mice midbrain N27 cell line and a set of toxicity assays to
examined the relationship between oligomer structure and toxicity.
Amyloid aggregates are thought to exert toxicities by enhancing ROS
production and inducing the mitochondrial dysfunction in cells. [4,56]
Therefore, we examined general cell toxicity of insulin aggregates, as
well as investigated the extent to which these structures are engaged in
ROS production and mitochondrial dysfunction of cells, Fig. 5.

LDH test indicated that Ins:CL, Ins:PC:CL (1:0.5:0.5), Ins:PC:CL
(1:0.8:0.2), Ins:PC, Ins:PS and Ins:SM exhibited significantly lower cell
toxicities compared to insulin aggregates grown in the lipid-free envi-
ronment (Ins), Fig. 5. Specifically, toxicity of Ins:CL and Ins:PC:CL
(1:0.5:0.5) was twice, whereas toxicity of Ins:PS, Ins:PC and Ins:PC:CL
(1:0.8:0.2) was more than three times lower than toxicity of Ins aggre-
gates. Ins:CER exhibited similar cell toxicity to Ins aggregates. Impor-
tantly, lipids themselves did not exert any significant cell toxicity.

The results of ROS test were consistent with the results of the dis-
cussed above LDH levels that were observed upon the exposure of N27
cell to the insulin aggregates that grown in the lipid-free and lipid-rich
environments. We found that Ins aggregates yield significantly higher
ROS levels compared to the aggregates grown in the presence of lipids.
We have also found that Ins:PC:CL (1:0.8:0.2) and Ins:PC caused the
lowest ROS production. ROS response increased from Ins:PC:CL
(1:0.5:0.5) to Ins:CL, Ins:PS, Ins:SM and Ins:CER.

We also utilized the JC-1 dye, a probe of mitochondrial membrane
potential, to examine the mitochondrial dysfunction caused by insulin
aggregates. It was found that insulin aggregates grown in the lipid-free
environment cause significantly higher mitochondrial dysfunction
comparing to the protein aggregates grown in the absence of lipids.
Thus, if grown in the presence of lipids, insulin aggregates will exert
substantially lower ROS and mitochondrial dysfunction. We have also
found that CL, PC:CL (1:1), PC:CL (1:4) and SM exert small but notice-
able mitochondrial dysfunction. Overall, our results show that lipids
uniquely alter the toxicity of insulin aggregates. Furthermore, the
structure and corresponding toxicity of such aggregates is governed by
the chemical structure of the lipid.

2.5. Mechanism of insulin aggregates’ toxicity

Protein aggregates can permeabilize the plasma membrane of cells
directly or alternatively enter cells via endocytosis. In the former case,
amyloid aggregates damage the cell plasma membrane, and this can
cause a cell death. [82] In the latter case, protein aggregates accumulate
inside endosomes. The aggregates can subsequently be exocytosed to
return to the cell’s exterior. However, aggregates may also damage
endosomal membranes and leak into the cytosol. They may thus use this
route to induce ROS and mitochondrial dysfunction [83,84]. We per-
formed a set of biochemical assays to determine whether insulin

BBA - Molecular and Cell Biology of Lipids 1868 (2023) 159247

aggregates are endocytosed by cells and whether they cause damage to
the endosomal membranes. Such damages initiate endosomal repair,
clearance of damaged endosomes by autophagy and de novo biogenesis
of organelles [85].

To establish relationships between insulin aggregates and endosomal
membrane damage, the probes Chmpl-EGFP, Gal3-EGFP, and TFEB-
EGFP were used. Chmpl proteins bind to membranes of damaged
endosomes that exhibit Ca%* leakage into the cytosol engaging ESCRT-
III complex in membrane repair processes, [85-87] Scheme 1. Endo-
somal damage can also expose luminal f-galactosides to the cytosol.
Cytosolic Gal3 binds to exposed f-galactosides, thereby initiating auto-
phagy, [85,88] Scheme 1. Chmp1-EGFP and Gal3-EGFP construct were
transiently transfected into cells and endosomal membrane damage was
detected by quantifying the localization of Chmp1-EGFP or Gal3-EGFP
by fluorescence microscopy. A diffuse and cytosolic distribution of
Chmp1/Gal3 is observed in the absence of endosomal while Chmpl/
Gal3-EGFP puncta form when endosomes are damaged. Finally, TFEB
is a transcription factor that regulates lysosomal biogenesis and auto-
phagy [89-91]. Activation of TFEB is linked to endosomal cat efflux,
activation of the phosphatase calcineurin, dephosphorylation of TFEB,
and subsequent translocation of the transcription factor to the nucleus,
Scheme 1. [85] In turn, nuclear TFEB activates a transcriptional pro-
gram that induce de novo biogenesis of endosomal organelles. Therefore,
cell transfected with TFEB-EGFP were used to monitor the cytoplasm to
nucleus translocation of the transcription factor upon exposure to in-
sulin aggregates.

We found that insulin aggregates grown in the presence and absence
of lipids cause damage of endosomal membranes, as measured by
Chmpl, Gal3 and TFEB, Fig. 6 and Fig. S4. The extent of endosomal
damage directly depends on the structure of the aggregates. Specifically,
Ins:PS causes higher Ca?* leakages, endosomal repair (Chmp1b) and de
novo biogenesis (TFEB) of endosomes comparing to other insulin ag-
gregates. At the same time, Ins:CL and Ins:PC:CL (1:0.5:0.5) induce the
lowest Ca?* leakages and endosomal repair (Chmp1b). We also found
that Ins and Ins:PS induce very little endosomal autophagy (Gal3),
whereas Ins:CL, Ins:PC:CL (1:0.5:0.5) and Ins:PC primarily disrupt
endosomes using Gal3 pathway. These findings show that insulin ag-
gregates cause damages of endosomal membranes inducing their repair
and de novo biogenesis.

3. Discussion

Abrupt insulin aggregation is the underlying molecular cause of in-
jection amyloidosis, a severe pathology that arises from the injection of
insulin in the skin dermis and subcutaneous fat layer [66,67]. Injections
cause a local increase in the concentration of insulin, which, in turn,
triggers protein aggregation. Insulin aggregates can induce abrupt ag-
gregation of a large number of proteins present in the body, which re-
sults in systemic amyloidosis [69]. As was previously demonstrated by
Kurouski and co-workers, insulin aggregation at pH below 2 resulted in
formation of tape-like fibrils, whereas at pH above 2, insulin formed left-
twisted fibrils [76]. It was also found that these tape-like and twisted
fibrils had distinctly different supramolecular chirality [76].

Lipids are one of the most abundant classes of biological molecules in
subcutaneous fat and cell membranes. Our results show that lipids
drastically alter insulin stability either accelerating or decelerating its
aggregation. We found that phospholipids with net negative charges,
such as CL (net charge is —2) or PS (net charge is —1) strongly accelerate
insulin aggregation. Zwitterion lipids, such as SM and PC either decel-
erate (SM) or strongly inhibit (PC) insulin aggregation. Interestingly that
CER that possesses no charges at neutral pH also accelerates insulin
aggregation. This finding suggests that both charge and chemical
structure of the lipid play an important role in lipid-protein interactions
that trigger or inhibit insulin aggregation.

It should be noted that not only the charge of lipids, but also cur-
vature of the lipid vesicles can play an important role in protein-lipid
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midbrain N27 cells for 48 h. For each of the presented results, three independent measurements were made.
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Scheme 1. Mechanism of cell toxicity exerted by insulin aggregates.

interactions that can alter the rates of protein aggression [92,93]. For
instance, Terakawa and co-workers demonstrated that small unilamellar
vesicles (SUVs) enable much faster aggregation of amyloid f1-40 pep-
tide comparing to large unilamellar vesicles (LUVs) with the same lipid
composition [94]. The researchers inferred that this effect originates
from a higher level of defects of lipids in SUVs comparing to LUVs.
Consequently, lipids in these defects are more accessible to proteins that
localize on the surface of the vesicles. Considering these observations, all
phospholipids utilized in our study were assembled into LUVs with the
same (~100 nm) vesicle diameter prior to mixing with insulin.
Lipid-protein interactions are developed between charged amino
acid residues of proteins and polar head groups of lipids. For instance,
lysine and glutamic acid residues on N-terminus (amino acids 1-60) of
a-Syn exhibit strong electrostatic interactions with headgroups of
phospholipids that triggers a-Syn aggregation [95]. NMR and fluores-
cence methods also revealed that lipid-protein interactions are facili-
tated by hydrophobic interactions between non-polar amino acid
residues of the protein and fatty acid tails of lipids [96,97]. Our findings
show that lipid-protein interactions with PC inhibit fibril formation
yielding only small oligomeric species that are highly rich with unor-
dered protein secondary structure. These oligomeric structures exhibit
low cell toxicity. Insulin interactions with SM, although decelerate its
aggregation, yield B-sheet-rich fibril-like structures that are highly toxic
to cells. Similar p-sheet-rich fibril aggregates are observed for Ins:CER,
Ins:PS and Ins:CL. However, toxicities of these morphologically similar
aggregates are significantly different. Furthermore, such aggregates
exhibit distinctly different mechanisms of cell damage. These findings
suggest that differences in the secondary structure itself may not be
sufficient to explain differences in the toxicities of amyloid aggregates.
Our previous findings and experimental results presented in this
study show that lipids become integrated in protein aggregates that form
in their presence [5,98-101]. These conclusions are based on observed
by AFM-IR vibrations of PO?~ of lipid head-groups in the spectra
collected from both a-Syn [5,98] and insulin [99-101] aggregates
formed at different stages of protein aggregation. Specifically, Rizevsky
and co-workers found that insulin oligomers grown in the presence of
both PC and CL possessed the corresponding lipid molecules in their
structure [99]. It was also found that insulin filaments and fibrils grown
in the presence of these phospholipids possessed significantly lower
amount of lipids. Furthermore, it was found that in the presence of both
phospholipids, insulin preferably bound PC rather than CL [99]. These
results suggested that drastic differences in toxicities of p-sheet-rich
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fibril structures were likely determined by the chemical structure of
lipid-protein complex present in such aggregates.

An uptake of amyloid aggregates by cells typically occurs by their
endocytosis. Our findings show that insulin aggregates damage endo-
somes triggering a cascade of endosomal repair mechanisms, Scheme 1.
Endosomal damage, in turn, induces Ca®* leakage into cytosol. This
disruption of Ca?* homeostasis is a likely pathomechanism of cell
apoptosis that compromises living systems in the context of aging. In
addition to the Ca?" leakage, degradation of endosomes may lead to the
escape of the aggregates into the cytosol where they induce ROS pro-
duction and cause mitochondrial damage. These results are in a good
agreement with recently reported findings by Matveyenka and co-
workers [102]. Specifically, it was demonstrated that insulin aggre-
gates grown in the lipid-free environment and in the presence of lipids
caused irreversible damage of cell endoplasmic reticulum (ER), an
important cell organelle used for calcium storage, protein synthesis and
folding. Specifically, amyloid-induced ER damage activates the unfolded
protein response (UPR) in the cell, which, in turn, suppresses protein
expression and increases chaperon activity. Thus, one can expect that
with an enhanced ROS levels and mitochondrial damage, cells fail to
mitigate the ER stress and restore normal cell physiology, which ulti-
mately causes their death.

4. Conclusions

Our experimental findings show that lipids uniquely alter both the
lag-phase and rate of insulin aggregation. We also found that in the
presence of lipids, insulin forms structurally and morphologically
different aggregates that have significantly lower cell toxicities then fi-
brils grown in the lipid-free environment. We observed a direct rela-
tionship between presence of p-sheer secondary structure and cell
toxicity. We also found that a level of cell toxicity, ROS production and
mitochondrial damage is dictated by the lipid-protein complex that is
different for different lipids.

It should be noted that the reported in this work results only revealed
biophysical effects of individual lipids on the rates of insulin aggrega-
tion, as well as on the structure and corresponding toxicity of insulin
aggregates. We expect that these results can be used to model the effects
of these lipids in the context of lipid membranes to establish the
connection between change in the lipid profile of cell membranes and
neurodegeneration. Nevertheless, other important chemical and phys-
ical factors such as lipid composition of membranes, membrane defects
and curvatures, should be considered to establish the relationship be-
tween a change in the lipid profiles and neurodegeneration.

5. Experimental section
5.1. Materials

Bovine insulin was purchased from Sigma-Aldrich (St. Louis, MO,
USA), 1,2-ditetradecanoyl-sn-glycero-3-phospho-r-serine (DMPS or PS),
1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC or PC), 1’,3'-bis
[1,2-distearoyl-sn-glycero-3-phospho]-glycerol (18:0 cardiolipin (CL)),
sphingomyelin (SM) and ceramide (CER) were purchased from Avanti
(Alabaster, AL, USA).

5.2. Liposome preparation

DMPS, DMPC and CL large unilamellar vesicles (LUVs) were pre-
pared accordingly to the method reported by Galvagnion et al. [103]
Briefly, 0.6 mg of the lipid were dissolved in 2.6 mL of phosphate
buffered saline (PBS) pH 7.4. Lipid solutions were heated in water bath
to ~50 °C for 30 min and then placed into liquid nitrogen for 3-5 min.
This procedure was repeated 10 times. After this, lipid solutions were
passed 15 times through a 100 nm membrane that was placed into the
extruder (Avanti, Alabaster, AL, USA). LUV sizes were determined by



M. Matveyenka et al. BBA - Molecular and Cell Biology of Lipids 1868 (2023) 159247

Fig. 6. Endosomal damage induced by insulin aggre-
gates. Representative fluorescence of images of cells
exposed to insulin aggregates (top). Images are
pseudo-colored green for Chmp1lb and TFEB, and red
for Gal3. After 24 h of incubation of insulin (400 pM)
with and without lipids at 37 °C under 510 rpm,
sample triplicates were exposed to HEK 293 T cells
with previously transfected with Chmp1lb, TFEB, and
Gal3 plasmids. Scale bar is 50 pm. Histograms of
fluorescent puncta per cell, as well as the sum of pixels
from fluorescent puncta. For each of the presented
results, at least 15 individual images were analyzed.
(For interpretation of the references to colour in this
figure legend, the reader is referred to the web version
of this article.)
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dynamic light scattering. Due to the poor assembly properties, no LUVs
for SM and CER were prepared; lipids used as received. LUVs were stable
at pH 3 for several weeks without changing their size distribution (as
determined by DLS measurements). In contrast, LUVs nearly instanta-
neously disassemble at pH below 2.5. We infer that this disassembly is
caused by the protonation of their head groups.

5.3. Insulin aggregation

In the lipid-free environment, 400 pM of insulin was dissolved in
PBS; solution pH was adjusted to pH 3.0 using concentrated HCI. For Ins:
CL, Ins:CER, Ins:PS and Ins:SM, as well as for Ins:PC:CL (1:0.5:0.5) and
Ins:PC:CL (1:0.8:0.2), 400 pM of insulin was mixed with an equivalent
concentration of the corresponding lipid; solution pH was adjusted to
pH 3.0 using concentrated HCl. Next, the solutions were placed in the
plate reader (Tecan, Mannedorf, Switzerland) and incubated at 37 °C
under 510 rpm for 24 h. Although insulin can aggregate forming fibrils
at physiological pH, pH 3.0 was chosen in this work because insulin
isoelectric point is ~5.3. This drastically lowers protein solubility at pHs
above 3.8. At the same time, at pH lower than 3.0, LUVs could be easily
disassembled due to protonation of their headgroups.

5.4. Kinetic measurements

Insulin aggregation was monitored using thioflavin T (ThT) fluo-
rescence assay. Briefly, protein samples were mixed with 2 mM of ThT
solution and placed in the plate reader (Tecan, Mannedorf, Switzerland)
where samples were incubated at 37 °C under 510 rpm for 30 h. Fluo-
rescence measurements were taken every 10 min. Excitation wavelength
was 450 nm; emission was collected at 488 nm. ThT measurements were
done in triplicates.

5.5. AFM imaging

AFM imaging was performed using silicon AFM probes with related
parameters force constant 2.7 N/m and resonance frequency 50-80 kHz
were purchased from Appnano (Mountain View, CA, USA) on AIST-NT-
HORIBA system (Edison, NJ). After 24 h of incubation of insulin (400
pM) with and without lipids at 37 °C under 510 rpm, sample aliquots
were diluted with 1xPBS pH 3.0; deposited onto pre-cleaned silicon
wafer and dried under a flow of dry nitrogen. Analysis of collected im-
ages was performed using AIST-NT software (Edison, NJ, USA).

5.6. AFM-IR

AFM-IR imaging was conducted using a Nano-IR3 system (Bruker,
Santa Barbara, CA, USA). The IR source was a QCL laser. Contact-mode
AFM tips (ContGB-G AFM probe, NanoAndMore, Watsonville, CA, USA)
were used to obtain all spectra and maps. Sample aliquots were diluted
with 1xPBS pH 3.0; deposited onto pre-cleaned silicon wafer and dried
under a flow of dry nitrogen. Treatment and analysis of collected spectra
was performed in Matlab (The Mathworks, Inc. Natick, Massachusetts,
USA).

5.7. Circular Dichroism (CD)

After 24 h of sample incubation, samples were diluted to the final
concentration of 100 pM using PBS and measured immediately using J-
1000 CD spectrometer (Jasco, Easton, MD, USA). Three spectra were
collected for each sample within 205-250 nm.

5.8. Attenuated total reflectance Fourier-transform Infrared (ATR-FTIR)
spectroscopy

After 24 h of sample incubation, samples were placed onto ATR
crystal and dried at room temperature. Spectra were measured using
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Spectrum 100 FTIR spectrometer (Perkin-Elmer, Waltham, MA, USA).
Three spectra were collected from each sample.

5.9. Cell toxicity assays

Mice midbrain N27 cells were grown in RPMI 1640 Medium (Thermo
Fisher Scientific, Waltham, MA, USA) with 10 % fetal bovine serum
(FBS) (Invitrogen, Waltham, MA, USA) in 96 well-plate (5000 cells per
well) at 37 °C under 5 % CO,. After 24 h, the cells were found to fully
adhere to the wells reaching ~70 % confluency. Next, 100 pL of the cell
culture was replaced with 100 pL. RPMI 1640 Medium with 5 % FBS
containing protein samples. Concentration of FBS was decreased from
10 % to 5 % to lower the baseline absorbance level of the control ac-
cording to the specifications of lactate dehydrogenase (LDH) assay
(G1781, Promega, Madison, WI, USA) that was used to determine
toxicity of insulin aggregates. Insulin aggregates grown in the presence
and absence of lipids (24 h), as well as lipids alone were added to N27
cells to reach the final concentration of 400 pM. After 48 h of incubation,
we used CytoTox 96 non-radioactive cytotoxicity assay to determine
LDH levels in N27 cells. Absorption measurements were made in plate
reader (Tecan, Mannedorf, Switzerland) at 490 nm. Every well was
measured 25 times in different locations.

In parallel, reactive oxygen species (ROS) assay was performed using
the same cell culture. Briefly, ROS reagent (C10422, Invitrogen, Wal-
tham, MA, USA) was added to reach the final concentration of 5 pM and
incubated at 37 °C under 5 % CO;, for 30 min. After the supernatant was
removed, cells were washed with PBS and resuspended in 200 pL of PBS
in the flow cytometry tubes. Sample measurements were made in Accuri
C6 Flow Cytomer (BD, San Jose, CA, USA) using red channel (A = 633
nm). Percentages of ROS cells was determined using Acura software.

For JC-1 staining, 1 pL of JC-1 reagent (M34152A, Invitrogen,
Waltham, MA, USA) was added to cells and incubated at 37 °C under 5 %
CO;, for 30 min. After the supernatant was removed, cells were washed
with PBS and resuspended in 200 pL of PBS in the flow cytometry tubes.
Sample measurements were made in Accuri C6 Flow Cytomer (BD, San
Jose, CA, USA) using red channel (A = 633 nm). Percentages of ROS cells
was determined using Accuri software.

5.10. Membrane leakage assay

Three plasmids that code biomarkers Charged multivesicular body
protein 1b (Chmp1b - cell membrane repair), Galectin-3 (Gal3 - auto-
phagy) and Transcription factor EB (TFEB - lysosome biogenesis) were
used. Plasmids were delivered in HEK 293 T cell using GeneX Plus re-
agent (ACS-4004, ATCC, Manassas, VA, USA). HET 293 T cells were
grown in Dulbecco’s Modified Eagle Medium (DMEM) cell medium with
10 % FBS. After 24 h, the cells were found to fully adhere to the wells
reaching ~80 % confluency. Transfection was made in DMEM without
FBS during 4 h. Next, cell media was replaced on DMEM with 10 % FBS
and incubated for 24 h. Protein samples were added to the cells and
incubated for 24 h. Fluorescence cell imaging was performed in EVOS
M5000 microscope (Thermo Fisher Scientific, Waltham, MA, USA).
Chmplb and TFEB plasmids contain green fluorescence protein and
Gal3 contains red fluorescence protein, Fig. S4. Microscopic images re-
ported in Fig. S4 show cells with various numbers of punctata present in
each cell. Using these images, we counted number of punctata in cells
treated with insulin aggregates grown in the presence and absence of
lipids. The number of punctata was reported in the histograms shown in
the Fig. 6.
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