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ARTICLE INFO ABSTRACT

Keywords: The surface-enhanced activities of size- and shape-controlled gold nanoparticles (AuNPs) with superior chemical
Surface-enhanced Raman spectroscopy (SERS) stability were investigated to explore a possible development of a simple and non-destructive spectroscopic
Chemometrics

method to help the regulatory agency’s analytical services for rapid detection and characterization of selected
antimicrobials in animal feeds. Feed samples spiked at different concentration ranges of antimicrobials were
evaluated using AuNPs as a surface-enhanced Raman spectroscopy (SERS) agent. The collected SERS spectra
were mathematically preprocessed for further analysis. The classification models obtained 100% predictive ac-
curacy with zero or little misclassification. The first two canonical variables (p = 0.001) could explain >95% of
the variability in preprocessed spectral data. Most chemometric models for predicting MON, DEC, and LAS
concentrations showed a high predictive accuracy (2 > 0.90), lower predictive error (<20 mg/kg), and satis-
factory regression quality (slope close to 1.0). The statistical results showed no statistically significant difference
between the reference and SERS predicted values (p > 0.05). The findings and implications from the study
indicate that SERS would be a powerful and efficient technique possessing a great potential serving as an

Antimicrobials
Gold nanoparticles
Food safety

excellent monitoring and screening tool for antimicrobial contaminated samples in the on-site analysis.

1. Introduction

Raman spectroscopy is a vibrational spectroscopic technique for the
rapid identification of chemical and biological molecules based on the
scattering effect of the molecules (Smith and Dent, 2005). Raman
spectroscopy is more sensitive to the polarizability of symmetrical co-
valent bonds in non-polar functional groups, producing well-resolved
bands of a target molecule and its derivatives. However, its major
shortcoming is a small cross-section and low efficiency of Raman scat-
tering, resulting in a lack of sensitivity for the target analyte.
Surface-enhanced Raman spectroscopy (SERS) is an advanced Raman
technique which improves the weak Raman scattering efficiency of
molecules adsorbed on or at the vicinity of rough metal surfaces through
a surface plasmon resonance effect of metal nanoparticles (Craig et al.,
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2013). The suitability and efficiency of SERS are largely determined by
its preparation methods, including chemical reduction, electro/physical
deposition of nanoparticles, and thermal decomposition (Fan et al.,
2011). SERS enhancement factors reported in previous works are typi-
cally in the range of 10* to 10'° and even up to extremely high
enhancement levels enough for detection and orientation of a single
molecule (Craig et al., 2013). The SERS enhancement and intensity is
believed to be dependent on a local substrate morphology, which is
considered to influence the effect of surface resonance (Lee and Herr-
man, 2016; Plieth et al., 2005). The theories to explain the Raman
enhancement effect generating from randomly distributed “hot spots” (a
gap between nanoparticles) are based on the two suggested mechanisms:
electromagnetic (EM) mechanism and charge transfer mechanism (Craig
etal., 2013; Haynes et al., 2005). According to the EM mechanism, upon
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illumination by the light of a particular excitation wavelength, the
incoming photon interacts with the metallic nanoparticles within which
the conduction electrons oscillate, leading to the surface plasmon reso-
nance of dipole oscillation. This produces large-local electromagnetic
fields, resulting in an enhanced Raman emission. The Raman enhance-
ment is further amplified by the surface plasmon excitation of the sub-
strate. The charge transfer mechanism involves the formation of an
electric field due to electron transfer between the adsorbed molecule
and the metal nanoparticle which can shift the frequency of the scattered
photon and have an additional Raman enhancement effect (Plieth et al.,
2005).

For the last decades, there have been great efforts for the systematic
development of well-engineered SERS substrates and the improved un-
derstanding of the conditions to produce enhanced SERS signals. How-
ever, the SERS technique as a reliable and accurate analytical tool still
seems to have some issues and obstacles to overcome. The extensive
application for a simple field deployment as a reliable screening method
is still limited because most current SERS techniques rely on laborious
extraction procedures, complex manufacturing processes, and complex
chemometric techniques (Haynes et al., 2005). Besides, the results from
SERS measurements are often irreproducible because of the morpho-
logical variation of nanostructures and target-adsorption variability (Lee
and Herrman, 2016; Yuan et al., 2009). Chemometric methods have
been applied to facilitate spectral data processes and correlate actual
chemical and process measurements to the spectral data through diverse
statistical and mathematical procedures and tools (Cramer, 1993; Del-
wiche and Hareland, 2004). So such techniques allow us to better un-
derstand and interpret the spectral data by greatly simplifying the
complex data structure to find a piece of hidden information and test a
hypothesis (Johnson, 1998; Osborne et al., 1993). The chemometric
methods can be categorized into 1) the design of experiments such as
factor screening, 2) data preprocessing such as normalization, baseline
correction, and derivatization, 3) qualitative analysis/classification such
as unsupervised or supervised pattern recognition methods, and 4)
calibration such as artificial neural network and partial least squares
(Lee et al., 2005; Moros et al., 2010; Roggo et al., 2007).

Plasmon-enhanced phenomena in gold nanoparticles (AuNPs) for
SERS detection of a variety of analytes have been an interesting and
challenging research subject for the last decades (Amendola et al., 2017;
Athukorale et al., 2019). Table 1 summarizes the application of gold and
silver nanoparticles as SERS agents used in the previous studies. The
Raman scattering efficiency can be greatly improved if target molecules
are deposited close to plasmonic AuNP substrates (Jahn et al., 2016).
Despite the controversial hypotheses, the charge-transfer metal--
molecule is considered as one of the main effects that are responsible for
resonantly-enhanced Raman signal (Lombardi and Birke, 2009). A high
enhancement effect of Raman scattering can be obtained from a single
hot-spot between two Au spheres and largely depends on the gap size
(Moskovits, 2005; Simoncelli et al., 2016). In the local-field enhance-
ment of Raman scattering, the AuNP substrate increases the light in-
tensity at the metal surface as well as enhances Raman scattering effect
from target molecules (Di Fabrizio et al., 2016). It’s generally accepted
that the Raman enhancement effect in AuNP substrate is maximized
when the wavelength of excitation and Raman scattering photons is
within the profile of surface plasmon resonance of gold nanoparticles
(Amendola et al., 2017). The local electromagnetic field decays sub-
stantially with distance from the surface of AuNP so the Raman
enhancement effect may dramatically reduce from the surface (Joshi
et al., 2016). This indicates that molecules located in the first layers
adjacent to the metal surface could determine the Raman enhancement
effect (Compagnini et al., 1999). Multiple factors can influence
plasmon-enhanced phenomena, of which the size, structure, and
morphology of AuNPs have been intensively studied for their effects on
physicochemical properties because they can substantially affect the
degree of enhancement of local electromagnetic fields and its use as
SERS agents (Bastis et al., 2011; Bigall et al., 2008). The
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Table 1
Gold (Au) or silver (Ag) nanoparticles-based SERS sensors applied for detection
of selected target analytes in various matrices.

Sensor type Sample Target analyte Limit of References
matrix detection
Molecularly Rice and  Prometryn and 20 pg/kg Yan et al.
imprinted wheat simetryn (2019)
polymer-AuNPs
Spheroidal AuNPs Pome Pyrimethanil 4.74 mg/ Mandrile
fruits kg et al.
(2018)
Spheroidal AuNPs Fish Trace methylene 10 ng/g Li et al.
muscle blue (2016)
Spheroidal AuNPs  Tea Carbendazim 100 pg/ Chen et al.
kg. (2019)
Spheroidal AuNPs Apple Chlorpyrifos 0.13 mg/ Chen et al.
kg (2015)
Ultrafiltration Orange Thiabendazole 0.125 pg/ Hong et al.
membrane- extract g (2017)
AuNPs
Spheroidal AuNPs Apple Paraquat 0.2 pg/L Luo et al.
juice (2018)
Flower-shaped Water Carmine 1078 M. Wu et al.
AgNPs (2017)
Spheroidal AgNPs Pear Alternariol 1.30 pg/L Pan et al.
(2018)
Molecularly Apple Chlorpyrifos 0.01 mg/ Feng et al.
imprinted juice L (2017)
polymers-
colorimetric
AgNPs
Chitosan-modified Milk Melamine; 1 mg/L; Lietal.
AgNPs powder dicyandiamide; 100 mg/ (2017)
sodium L;
sulfocyanate 10 mg/L

surface-enhancement activities of AuNPs are in general lower than those
of silver nanoparticles (Athukorale et al., 2019). But the AuNPs for SERS
is often preferred because it can provide better chemical stability and
higher biocompatibility (Amendola et al., 2017; Bastts et al., 2011).
Monensin (MON), lasalocid (LAS), and decoquinate (DEC) have been
used as coccidiostats in poultry and as growth promoters in swine and
cattle (Clarke et al., 2014). Of these coccidiostats, MON and LAS belong
to the ionophores group with complex and high molecular weight,
derived from several Streptomyces species (Harris et al., 1998). These
ionophore antimicrobials readily form complexes with metal cations
through hydrogen bonds (Chattopadhyay et al., 1992; Picquart, 2000).
Such complexes can interact with phospholipids and cross cell mem-
branes with the help of the gradients in cation concentration and pH.
MON carries Na + ions more efficiently while LAS seems more appro-
priate for transporting K+ ions. Transporting metal cations across the
cell membrane is the main action mode of MON and LAS, which can
significantly affect the osmotic balance in the cell, causing the death of
the parasite cell (Matabudul et al., 2002). DEC is a chemical coccidiostat
and acts on a parasite cell differently from MON and LAS. DEC prevents
the production of mitochondrial energy during the early stage of cell
development (Clarke et al., 2014). There has been an increasing public
concern on the misuse of these antimicrobials, particularly, the poly-
ether ionophores which are believed to induce some damages on pe-
ripheral nerves and cardiac and skeletal muscles of animals (Oechme and
Pickrell, 1999).19 Such toxic consequences can occur when the antimi-
crobials are taken above the recommended levels or present in animal
feeds not intended for particular species. For example, a therapeutic
level of MON for chicken (121-150 mg/kg) in feed can cause intoxica-
tion for cattle and 20-50% of its overdosage may also show the first
evidence of toxicity (Dowling, 1992; Matsuoka et al., 1996). Office of
the Texas State Chemist (OTSC) is a regulatory body that oversights for
about 5,000 feed firms distributing 23 million tons of feed products in
Texas, US, and abroad. The agency also serves a large animal population
including 900,000 dairy cows and 12.6 million cows and calves. As a
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regulatory body, the agency needs to analyze large amounts of feed
samples on a daily base including antimicrobial residues in animal feed,
particularly MON, DEC, and LAS. Thus, the spectroscopic method
including the SERS technique would provide a new innovative way of
analyzing and effectively managing antimicrobials reissues in feed
products to promote the feed safety and quality and protect the health of
animals and humans.

A critical need exists to develop and implement accurate and reliable
analytical methods for early detection and identification of the antimi-
crobials in different types of contaminated feed matrices at inclusion and
trace levels for their quality control and regulation. Besides, it has been
challenging to design the appropriate procedures of extraction, clean-
up, and pretreatment of the sample matrices, particularly for multi-
residue antimicrobial analysis before instrument evaluation (Bacanli
and Basaran, 2019; Boscher et al., 2010). The current analytical methods
widely used for the detection of antimicrobial residues in animal feed
may be categorized into 1) relatively simple and inexpensive screening
methods including microbiological assays and immunoassays (Kurittu
et al., 2000; Weber et al., 2005) and 2) highly selective and sensitive
confirmatory methods including liquid chromatography (LC) coupled to
mass spectrometry (MS) (Mortier et al., 2005), capillary electrophoresis
(CE) (Garcia-Campana et al., 2009), and LC with ultraviolet (UV)
detection (Benito-Pena et al., 2009). Recently there have been also
increasing interests in the application and benefit of automatic bio-
sensors due to their high specificity and affinity to antimicrobial mole-
cules (Bacanli and Basaran, 2019). However, it’s worthwhile to note that
the confirmatory methods are expensive and time-consuming and
require large amounts of reagents, highly experienced personnel, and
well-equipped laboratories. Meanwhile, the screening methods gener-
ally lack specificity and accuracy and offer only semi-quantitative re-
sults of antimicrobial residue. Simple and non-destructive spectroscopic
methods such as infrared spectroscopy coupled with chemometric
methods have demonstrated their ability to characterize and differen-
tiate coccidiostats-containing feed additives with different formulations
(Omar et al., 2015). For official antimicrobial analysis of animal feeds,
the laboratories are necessary or recommended to be accredited and
comply with the requirements according to ISO/IEC 17025:2017 to
fulfill the quality parameters of the analytical methods (Separovic et al.,
2019).

SERS technique is attractive and promising for rapid identification
and characterization of restricted antimicrobials because it’s simpler,
faster, and more efficient than standard wet-chemical methods (He
et al., 2010; Lai et al., 2011; Zhang et al., 2012a). This technique re-
quires a small sample size, time-and cost-effective sample preparation
for field operation, and simplified sample extraction protocols (Lai et al.,
2011). Besides, the SERS method can provide useful and valuable in-
formation on molecular structure, reactivity, and conformation of an-
timicrobials (Olavarria-Fullerton et al., 2011). The presence and shift of
characteristic peaks corresponding to vibrational modes of antimicro-
bial molecules are often used for identification of functional chemical
groups and assessment of their binding properties with the metal surface
as well as the determination of degradation products and derivatives of
the antimicrobials (He et al., 2010; Lai et al., 2011; Olavarria-Fullerton
et al., 2011). However, to our knowledge, there has been only a little
research to analyze selected MON, DEC, and LAS antimicrobials in very
complex animal feed matrices using vibrational spectroscopic methods.
No one or little work has been done to evaluate the feasibility and
possibility of a more sensitive SERS technique for qualitative and
quantitative analysis of the antimicrobials in feed. Therefore, the pur-
pose of the present study was to explore the feasibility of SERS technique
based on a different type of gold nanoparticles in combination with
chemometric algorithms to develop simple, rapid, and low-cost method
for early detection and identification of three commonly used antimi-
crobials in animal feeds using an extract after performing a simple
extraction step in the in-house methods developed for confirmatory
HPLC analyses. The developed method was aimed to be able to screen
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antimicrobial contaminated feed samples at a level of concern of the
regulatory agencies and consumers.

2. Materials and methods
2.1. Materials

Monensin (MON), decoquinate (DEC), and lasalocid sodium (LAS)
were purchased from Sigma-Aldrich Co. (St. Louis, MO). All organic
solvents, reagents, and chemicals employed in the extractions and for
HPLC analysis were of analytical grade and used as received without any
further purification.

2.2. Sample preparation

Non-contaminated beef cattle feeds with antimicrobials were ob-
tained from the Office of the Texas State Chemist (OTSC) regulatory
samples collected according to the state’s sampling plan. The feed
samples were spiked at different concentration ranges of MON (1.0, 5.0,
7.5,10.0, 12.5, 15.0, 17.5, 20.0, 25.0, and 50.0 mg/kg), DEC (1.5, 3.0,
5.0, 10.0, 15.0, 20.0, 25.0, 50.0, 75.0, and 100.0 mg/kg), and LAS (2.5,
5.0, 10.0, 20.0, 30.0, 40.0, 50.0, 75.0, 100.0, and 150.0 mg/kg). The
samples were then stored in a polyethylene bottle in a 4 °C refrigerator.
Before biochemical and SERS spectroscopic analyses, the samples were
equilibrated at room temperature for at least 1 h.

2.3. Sample extraction and HPLC analysis of antimicrobials

MON was extracted from the spiked cattle feed according to the
AOAC method (Campbell and Nayeri, 2006). Briefly, an appropriate
amount of the sample according to its concentration was placed in a 250
mL bottle and extracted using 100 mL of methanol/water solution
(90:10, v/v) by shaking for 60 min at 225 rpm. Approximately 50 mL of
the extract was centrifuged for 5 min at 3,000 rpm. After centrifugation,
each sample was filtered through a 0.2 pm filter before SERS analysis.
Meanwhile, for HPLC analysis, the sample was additionally diluted with
90% methanol extraction solution to the range of 0.5-4.5 pg/mL within
the calibration curve of 0.25-5.0 pg/mL. The final dilution of each
sample was then filtered through a 0.2 pm filter before injection into an
HPLC system for analysis.

Likewise, the modified AOAC method (Sanchez and Campbell, 2008)
was used for the extraction of DEC in beef cattle feed. Approximately 10
g of sample was extracted with 100 mL of 1% CaCl,.2H20/methanol
solution by shaking for 90 min at 220-250 rpm. At least 40 mL of the
extract was then centrifuged for 5 min at 2,500 rpm. The supernatant
solution after centrifugation was filtered through a 0.2 pm filter and
subjected to the following SERS analysis while an aliquot of each sample
was appropriately diluted with 1% CaCl,.2H,0/methanol solution and
then added with H5O to reach a desired concentration of DEC for HPLC
analysis.

LAS spiked in the cattle feed was extracted based on the method
proposed by Focht (2008). First, an appropriate weight of sample ac-
cording was put in a 250 mL in Erlenmeyer flask and diluted with 0.5%
acidified methanol solution according to its concentration. The sample is
then placed into a preheated ultrasonic bath (40 + 5 °C) and sonicated
for 20 min, followed by shaking for 1 h. After centrifugation of each
sample at 2,000 rpm for 10 min, an aliquot of the sample is directly
mixed with AuNP for SERS analysis, or it was appropriately diluted to
the desired volume with 0.5% acidified methanol (extracting solution)
and filtered with a PVDF filter before injecting into HPLC system.

The predetermined volumes of an aliquot were injected into HPLC
systems. Different operating conditions of the HPLC systems used for
analysis of the three antimicrobials in the present work were summa-
rized in Table 2. Other detailed parameters and analytical conditions
employed for analysis of the selected antimicrobials were described in
more detail in the aforementioned publications (Campbell and Nayeri,
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Table 2
Operating conditions of HPLC systems used for determination of monensin
(MON), decoquinate (DEC), and lasalocid sodium (LAS) in spiked cattle feeds.

HPLC MON DEC LAS
conditions
HPLC system Waters 2695 Agilent 1100 Agilent 1100
(Waters, (Agilent Technol., (Agilent Technol.,
Milford, MA) Palo Alto, CA) Palo Alto, CA)
Analytical Spherisorb 4.6 Waters Symmetry ®  Waters Symmetry ®
Column x 150 mm, C18 C18(4.6 x 150 mm,  C18 (4.6 x 150 mm,
5 pm) 5 pm)
Reference 0.25-5.0 0.15-6.0 1.0-5.0
standard
solution (mg/
kg)
Mobile phase 94:6 MeOH:H,0 82.5/17.5 MeOH: CH3COONH,4
with 0.1% H0 + buffer/
CH3COOH 5.0 g CaCH2H»0 CH3CN:15:85
Flow rate 0.8 mL/min 1.1 mL/min 1.3 mL/min
Detector Waters 2487 Fluorescence Fluorescence
UV/VIS, 520 nm  detector detector
266 nm excitation 315 nm excitation
394 nm emission 418 nm emission
Injection 50 pL 10 pL 50 pL
volume
Software Empower Chemstation Chemstation

2006; Focht, 2008; Sanchez and Campbell, 2008).

2.4. Preparation of gold nanoparticles

Gold nanoparticles (AuNPs) for SERS measurements were prepared
with minor modifications to the previous method (Bastis et al., 2011).
In brief, sodium citrate solution (2.2 mM) in 150 mL of analytical grade
water was placed into a three-necked round-bottomed flask and heated
with vigorously stirring for 30 min. The flask was connected to a
condenser to prevent the loss of the evaporated solution. Once the
boiling of the solution initiated, HAuCl4 (1 mL, 25 mM) was added to the
flask. After the solution color was changed from yellow to pale pink, the
size of negatively-charged gold nanoparticles appeared to be about 10
nm in diameter which served as Au seeds for subsequent AuNP synthesis.
The synthesized Au seeds in the same flask were cooled to reach the
temperature of the solution at around 90 °C. HAuCl, (1 mL, 25 mM) was
subsequently added to the flask vessel. After 30 min, the same solution
was added with HAuCly (1 mL, 25 mM) once more. The solution (50 mL)
was then extracted and diluted with water (53 mL) and sodium citrate
(2 mL, 60 mM). The resulting solution was then utilized as a seed so-
lution and again diluted with water (53 mL) and sodium citrate (2 mL,
60 mM). This process was repeated until gold nanoparticles grow to
larger and desirable particle sizes (approx. 70 nm) (Fig. 1). During this
process, homogeneous size and shape of AuNPs could be achieved by

Food and Chemical Toxicology 144 (2020) 111633

preventing the formation of secondary nucleation and stabilizing the
particles via the reduction of HAuCly by sodium citrate. Besides, the
preparation of AuNPs was reproducible and the prepared particles had
an appropriate size and shape to promote their plasmon-enhanced
phenomena for SERS measurements.

Transmission electron microscopy (TEM) images of synthesized
AuNPs were made with a JEOL 1200EX operating at 100 kV (JEOL Ltd.,
Tokyo, Japan) to examine the size and morphology of the nanoparticles
at different stages of synthesis. Zetasizer Nano ZS ZEN3600 analyzer
(Malvern Instrument Ltd, UK) was also used to evaluate the size distri-
bution of AuNPs. The TEM image and particle size distribution results
indicated a relatively narrow range of monodispersed nanoparticles
with less than 100 nm particle size (Fig. 1) which could be achieved by
effectively controlling manufacturing conditions, for example, temper-
ature, pH, and seed particle concentrations. These controlled conditions
for particle growth could contribute to the high stability of the AuNP
solution to a greater extent because the kinetics of HAuCl, reduction and
the nucleation rate is largely dependent on temperature and pH of the
solution. Under these conditions, the electrostatic interactions cannot
impair the particles’ stability in solution. Based on the particle size
distribution and the previous studies (Verma et al., 2014; Zhao et al.,
2012), the zeta potential was estimated at around —35 eV (neutral
condition) at which the electrostatic repulsion and stability of the
nanoparticles were considered to be desirable and increased. These
observations indicate the prepared AuNPs would be no aggregation in
solution and could have appropriate optical properties suitable for SERS
measurements. We compared the Raman peak intensity of MON, DEC,
and LAS samples at the same concentration that had been analyzed
during the study period. The SERS signal was reproducible yielding
almost identical Raman peak intensity and profile for the specific region
and wavelength of sample extracts for each antimicrobial. Thus, it ap-
pears that the synthesized AuNPs for the study were stable and reusable
at least over periods up to 3 months and are comparable to the syn-
thesized gold nanoparticles reported in other previous works (Kuncicky
et al., 2005; Sanz-Ortiz et al., 2015; Tian et al., 2014).

2.5. SERS measurement

A mixture solution was prepared by gently mixing 10 pL sample
extract with 30 pL AuNP solution and 3 pL 1% NaCl solution. After
equilibrium for 2 min at room temperature, 30 pL of the mixture solution
was transferred to the Al capsule in the well plate for SERS measure-
ments in triplicate using Raman Spectroscopy (RamanStation 400F,
PerkinElmer, Beaconsfield, Buckinghamshire, U.K.). Reference standard
solutions at different antimicrobial concentrations used for HPLC ana-
lyses (Table 2) were also mixed with AuNP and 1% NaCl solutions for
SERS measurement in the same way to compare the results between the
spectroscopic and standard wet chemical methods. Naturally

10
1 -~ 64/Inm !
8 - 1
| /
> 6 7 -
= + / %
«n F i %
g 4 .; ‘. 1
E 1 4nm
2 4 —
0 ——t—t——t +——t— -+t ' ! T
0.1 1 10 100 1000 10000
Size (nm)

Fig. 1. Transmission electron microscopy (TEM) images and size distribution of gold nanoparticles (AuNPs) used for surface-enhanced Raman spectroscopy (SERS)
measurement of antimicrobial spiked sample extracts. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
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contaminated feed samples at different concentrations were also
analyzed as controls using Raman spectroscopy without employing
AuNPs for comparison with SERS spectra. The Raman system interfaced
with the software (Spectrum v. 6.3) for data acquisition and process
consisted of a near-infrared laser source of 785 nm wavelength and a
256 x 1024 pixel charge-coupled device (CCD) detector. The laser power
of 20 mW was delivered to the sample in the focus of 1.0-mm x 1.0-mm
with exposure times of 15 s and 2 scans. The spectral data were recorded
in the Raman shift range from 200 to 3,500 cm ™" at the spectral reso-

lution of 4 ecm™ .

2.6. Preprocessing of spectra

The SERS spectrum of antimicrobial spiked feed sample extract was
corrected for background at the time of its acquisition through a
computational process using the embedded software (Spectrum v. 6.3).
All spectra were further baseline-corrected and normalized in the spe-
cific Raman shift ranges to minimize unpredictable variation in Raman
signal induced by subtle laboratory environmental changes and instru-
mental effects including monochromator drift with temperature, sample
heating, sample radiation, photon flux incident, pixel-to-pixel variation,
and temperature variation of detector elements (Bowie et al., 2000).
These subtle changes may cause unpredictable artifacts including ali-
asing effect, increased noise level, wavenumber shift, broad bands, and
hot pixels. The baseline-corrected and normalized spectra were also
preprocessed by applying a 9-point Savitzky-Golay filtering function to
obtain the first and second derivatives of the spectra. The deconvolution
process was also carried out for the normalized spectra to improve the
resolution of overlapped and unresolved bands. All preprocessed spectra
were exported in ASCII format for further statistical analysis and the
calculation procedures of the chemometric models for calibration and
validation.

2.7. Development and validation of classification and quantification
models

The preprocessed spectral data in ASCII format was used to develop
the chemometric models for classification of the spiked feed samples
based on the level of antimicrobial contamination using the two classi-
fication algorithms: linear discriminant analysis (LDA) and k-nearest
neighbor (KNN). A linear discriminant analysis (LDA) assigned a sample
into one of the antimicrobial concentration groups based on the Maha-
lanobis squared distance calculated using pooled covariance matrices
(Johnson, 1998). That is, a sample is assigned to the group in which the
samples are closest to the new sample. On contrary to LDA, the KNN
algorithm is a nonparametric discrimination procedure. This chemo-
metric algorithm is fundamentally dependent on the Mahalanobis dis-
tance between the pairs of the samples (Johnson, 1998). The procedure
looks at the distances between a new sample and two or more other
samples (i.e. k nearest neighbors) to assign the new sample to the group
to which a majority of its neighbors are located. The selected chemo-
metrics have been applied and proven to be suitable for in developing
and validating the models on Raman spectra as well as explaining the
relationship between target analytes and the acquired spectra, even the
overlapped and low-quality spectra (Lee and Herrman, 2016; Lee et al.,
2014). Multivariate statistical analyses including principal component
analysis (PCA) and cluster analysis (CA) were also performed to see how
well the spiked feed samples are classified into the predefined groups at
different concentrations of antimicrobial. PCA is one of the commonly
employed chemometric methods for screening complex multivariate
data (Johnson, 1998; Lee et al., 2014). This algorithm uses a mathe-
matical procedure to transform a set of correlated variables into a new
set of uncorrelated variables (principal components). PCA is generally
useful to classify test samples into several subgroups with similar
properties. In this study, PCA used entire or selected characteristic
Raman peaks to compute principal components of tested samples. CA is
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similar to discriminant analysis, but it classifies random samples whose
origination is unknown beforehand (Johnson, 1998; Lee et al., 2014).
For the study, CA was performed to classify large numbers of antimi-
crobial samples into subgroups with similar characteristics using Ward’s
minimum variance method option. As a result, all spiked samples were
partitioned into 4 different subgroups and coded according to the level
of antimicrobial in samples before the development of the classification
models. The spectral data of 66 spiked samples were used as a training
dataset to develop the calibration model while those of the validation
samples (n = 33) independently prepared from different sample lots
were employed to evaluate the performance of the calibration models.
The developed models were compared to identify and determine the
classification model with higher accuracy and better predictability
based on two calculation values, a correct classification rate, and a false
negative error.

The calibration models for antimicrobial quantification in animal
feeds were developed based on the regression between the reference
HPLC values and the preprocessed spectra by applying three chemo-
metric methods including multiple linear regression (MLR), principal
components regression (PCR), and partial least squares regression
(PLSR). As seen from the development of classification models, the
spectral data of training samples (n = 66) and independently prepared
validation samples (n = 33) were used for developing and testing the
models for each antimicrobial, respectively. The PCR and PLSR methods
are a spectral decomposition technique. But the principle of regressing
spectral data and the reference value is not identical between the two
methods, yielding the different optimal number of extracted factors to
explain the variance in the data (Lee et al., 2014). The predictability and
suitability of PCR and PLSR models developed with different numbers of
extracted factors were assessed based on coefficients of determination
(r2) and predicted residual sum of squares (PRESS) using a leave-one-out
cross-validation method. Meanwhile, the calibration models developed
from MLR determined the inclusion and the optimum number of
wavelengths as input variables using stepwise regression and R? selec-
tion methods based on partial r* values, partial F-values, and PRESS. All
chemometric models for antimicrobial quantification in animal feeds
were externally validated using independently prepared, but similar
samples. The sensitivity of the chemometric models was assessed with
the external validation datasets based on the limit of detection (LOD)
and the limit of quantitation (LOQ): LOD = (|a|+ 3S,)/b and LOQ =
(la| + 10S,)/b, respectively, where |a| is the intercept on the y-axis, Sq
represents the standard deviation for |a|, and b denotes the slope of the
linear regression equation.

More details and relevant information about chemometric algo-
rithms applied for the study can be found in previous studies (Delwiche
and Hareland, 2004; Dowell et al., 2002; Lee et al., 2014; Johnson,
1998).

2.8. Statistical analysis

The statistical comparison between the model-predicted values and
reference HPLC values was carried out through the ratio of the standard
deviation of the reference data to the standard error of cross-validation
(RPD), a paired sample t-test, and Pearson’s correlation coefficient (r).
SAS software (ver. 9.4, SAS Institute, Cary, NC) was mainly used to
perform most statistical data analyses and development and validation
procedures of the chemometric models for antimicrobial analysis.

3. Results and discussion
3.1. Spectral data processing and analysis

Selected feed samples were spiked with different concentration
ranges of each antimicrobial, consequently showing various descriptive

statistical values (Table 3). The descriptive statistics for each antimi-
crobial concentration were identical among the whole, training, and
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validation datasets, except for kurtosis and skewness, which can be
attributed to the different number of samples for each dataset. Although
the present study mainly employed unnaturally contaminated samples
and the sample size wasn’t very large, the range of each antimicrobial
concentration should cover the concentrations of most of the feed
samples contaminated with antimicrobials found in the commercial
market and feed industry. In fact, the maximum levels of antimicrobials
legally permitted in the commercial products are mostly within the
range of antimicrobial concentrations evaluated in the present study
(Done et al., 2013). Besides, animal feeds produced in Texas which were
collected and tested by our agency as a regulatory body for monitoring
antimicrobial residues in the commercial feed products have rarely
exceeded the maximal concentrations of antimicrobials spiked in sam-
ples used for the study. Therefore, the defined dataset may be sufficient
and suitable for the development of the model for the analysis of anti-
microbials in feeds, at least likely giving an idea and indication that the
SERS technique would be applicable, beneficial, and promising
compared to traditional wet chemical methods for a high throughput
analysis.

The normalized average SERS spectra representing four different
concentration groups of each antimicrobial are presented in Fig. 2.
Raman shift regions in Fig. 2 showed spectral variations in SERS spectra
by the concentration of antimicrobials in feed samples compared to
standard Raman spectra although SERS intensity difference did not
appear to be very significant, but depended on the type of antimicrobial.
The presence of antimicrobials and their concentration in the spiked
samples resulted in the visible spectral difference in SERS signal in-
tensity in several spectral regions while similar spectral intensities were
also observed in other spectral regions within each antimicrobial,
probably due to the existence of identical constituents and chemical
functional groups. The SERS signal intensity of antimicrobial spiked
samples tended to be in proportion to the spiking level in some Raman
shift regions regardless of the type of antimicrobial: 724—844 cm™,
1416-1504 cm™!, and 15041688 cm™ in MON; 632-804 cm™,
1048-1300 cm ™, and 1352-1416 cm ™' in DEC; and 680804 cm !,
10481356 cm ™}, and 1568—1700 cm ™! in LAS.

Such spectral differences resulting from the spiking level of antimi-
crobial are believed to be significant enough to develop the chemo-
metric models with accuracy suitable for screening of contaminated feed
samples. A similar quality spectral difference was also observed in the
first and second derivative spectra of each antimicrobial (data not
shown). SERS spectra of DEC sample extracts with a moderate difference
in spiking level among the concentration groups exhibited a larger dif-
ference in Raman signal intensity among the groups compared to those
of MON and LAS samples. This seems to imply that the spectral differ-
ence among different concentration groups is associated with the
physiochemical and morphological properties of the antimicrobial
molecule, rather than the level of spiking because DEC is known to have
relatively smaller molecular weight and simpler molecular structure
than MON and LAS (Zhang et al., 2012a).

Fig. 2 also clearly showed the characteristic peaks of the antimi-
crobial spiked sample extracts among different concentration groups
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and indicated that gold nanoparticles (AuNPs) could work for the
detection and identification of the antimicrobials investigated in this
study. However, as seen in Fig. 2, control samples measured without
employing AuNPs showed very weak Raman intensity. Consequently,
the Raman intensity difference among concentration groups of control
samples was indistinctive and negligible. As mentioned above, the type
of antimicrobial seemed to be more significantly associated with AuNPs’
performance on detection property and limit, rather than the level of
antimicrobial spiking. The aforementioned Raman shift regions showing
a large difference in SERS signal intensity are believed closely associated
with various chemical functional groups of antimicrobials and other
constituents extracted from the animal feeds. The distinctive SERS peaks
were observed at around 795, 1443, and 1604 cm ™! of MON extracts,
676, 736, and 1389 em~! of DEC extracts, and 788 and 1118 em™! of
LAS extracts (Fig. 2). The intensity of these peaks was positively or
negatively proportional to the concentration of antimicrobials up to the
highest concentration of each antimicrobial. Meanwhile, other peaks in
the given spectral regions associated with other constituents in the
sample extract were not linearly proportional to an increase in antimi-
crobial concentration, showing low and insignificant correlations in
later statistical analyses. The individual wavelengths with Raman peak
intensity correlated with an antimicrobial concentration in the given
regions exhibited a statistical significance with PCA factor loadings,
regression coefficients of PLS models, and Pearson correlation
coefficients.

An individual antimicrobial may require a uniquely designed SERS
sensor which selectively functions well for the specific antimicrobial
than other antimicrobials. In this study, AuNPs for SERS detection of
antimicrobial analysis were not designed and modified for the single
antimicrobial to induce a high binding affinity and physiochemical
interaction on the metallic surface. However, as seen in Fig. 2, unmod-
ified AuNPs seemed to have a strong and favorable interaction with a
part of functional chemical groups of all three antimicrobials and yiel-
ded selectively enhanced Raman signals enough for the detection and
characterization of the selected antimicrobials. No significant difference
in the average spectra was also observed between reference standard
solutions and spiked feed sample extracts for each antimicrobial. Spe-
cifically, strong SERS signals and unique characteristic peaks corre-
sponding to some functional chemical groups of antimicrobials were not
impaired at all by the presence of the interfering constituents and ions in
the coextracts of one of most complex feed matrices. These findings and
implications indicate an acceptable selectivity of the SERS sensor for the
analysis of the selected antimicrobials in animal feed. In fact, it was
considered that unmodified AuNPs would provide more benefits in
terms of a practical approach than the synthesis of modified AuNPs
because the preparation of the modified nanoparticles may require
complex, expensive, and time-consuming steps. The complicated and
costly synthesis steps could hinder the application of a rapid spectro-
scopic method for a routine screening method for a high volume of the
regulatory samples. Even more exclusive and laborious efforts may be
required when, as in this study, the synthesis of AuNPs for three different
antimicrobials or simultaneous detection of multiple antimicrobial

Table 3
Selected descriptive statistics for feed samples spiked with MON, DEC, and LAS.
Antimicrobial Dataset Count, n Mean, mg/kg Median, mg/kg Range, mg/kg Kurtosis Skewness
MON Whole 99 14.6 12.5 0-50 2.15 1.48
Training 66 2.44 1.52
Validation 33 3.60 1.65
DEC Whole 99 27.7 15.0 0-100 0.30 1.26
Training 66 0.44 1.29
Validation 33 0.97 1.40
LAS Whole 99 43.9 30.0 0-150 0.47 1.17
Training 66 0.62 1.20
Validation 33 1.21 1.30
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Fig. 2. Average SERS spectra of feed samples spiked with different levels of
each antimicrobial concentrations and standard Raman spectra of control
samples at specific concentrations and pure antimicrobials: (A) monensin
(MON), (B) decoquinate (DEC), and (C) lasalocid (LAS).

residues need to be optimized. As mentioned earlier, extraction pro-
cedures employed for purification of MON, DEC, and LAS molecules
were relatively simple and proved to be sufficiently effective for the
removal of major interfering peaks and isolation of target analytes. This
implies that neither extensive preparation steps nor a costly synthesis of
modified AuNPs might be necessary for the situation when a high-
throughput analysis and moderate selectivity are suitable and desir-
able. However, designing a SERS sensor capable of higher binding af-
finity and more favorable interaction with target antimicrobial
molecules is certainly desirable and needs to be achieved for lower limits
of detection and higher selectivity.
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The major Raman peaks of interest were tentatively assigned to
vibrational modes of antimicrobial molecules based on previous works
(Picquart, 2000; Smith and Dent, 2005) and using a spectroscopy soft-
ware (KnowlItAll®, Bio-Rad, Hercules, CA). In MON, the prominent
peaks at 795, 1443, and 1604 cm ™~ can be attributed to C-C-O in-phase
stretching, asymmetric CHg stretching, and aromatic ring stretching,
respectively. Likewise, the Raman peaks at 676, 736, and 1389 cm ™! of
DEC extracts are considered to correspond to C-C—=0O deformation, CC
skeletal vibration, and CH rocking, respectively. The C-C-O in-phase
stretching at 788 cm ™! and out-of-phase stretching at 1118 cm™! also
appeared to be largely influenced by the concentration of LAS in sample
extracts.

As proposed in the previous studies, AuNPs are useful SERS sub-
strates for the detection of trace chemical and biochemical hazards in
food and feed, including antimicrobial residues because of a strong
chemical interaction of antimicrobial molecules on the surface of the
metallic particles. The identified characteristic peaks mentioned above
were clear although the feed sample used for the study is considered a
very complex matrix with significant amounts of protein, different types
of carbohydrates, and other micronutrients which should be a major
obstacle in SERS application for detection of a trace amount of antimi-
crobial residue in the extract. No significant interfering peaks due to
other coextractants were observed, which can be attributed to the
effective removal of other constituents after a few simple extraction
steps including purification, filtration, and centrifugation. MON, DEC,
and LAS have the chemical structure that facilitates the selective binding
formation with AuNPs to promote the electromagnetic effect and thus
enhance Raman scattering efficiency. The binding and electrostatic
interaction between antimicrobial molecules and sodium citrate layer
on AuNPs can lead to the aggregation of the particles to create SERS hot
spots which are regions of strongly localized electromagnetic near-field
responsible for highly sensitive SERS detection of the target analytes.
The hot spots between adjacent AuNPs would produce a much stronger
signal than the individual AuNP (Li et al., 2011). The MON, DEC, and
LAS molecules have high hydrophilicity and ether groups which can
facilitate interacting with the surfaces of AuNPs via hydrogen and ionic
bonds (Luo et al., 2018).

These observations and implications indicate that SERS response is
sensitive enough to measure variations induced by the concentration of
the selected antimicrobials in the sample extracts. The interesting major
peaks and fingerprint regions in the pure antimicrobial agent were
consistently found in the corresponding spiked sample extracts. How-
ever, the location and intensity of the SERS peaks in the specific spectral
regions were not identical between the two sample types, which could
lead to Raman band assignments and data interpretation somewhat
difficult and unclear for SERS spectra of the sample extract (Fig. 2). As
mentioned above, such inconsistency in the spectra between the pure
antimicrobial agent and spiked sample extract might be attributed to the
fact that the SERS peaks of antimicrobial could be interfered with and
contributed from multiple functional groups of other constituents
extracted from the spiked feed samples. In addition to changes in the
chemical and structural properties of antimicrobial molecules after
extraction, the altered binding, chemical interaction, and orientation of
functional chemical groups on the metallic surface could also induce
some variations in the Raman peak intensity and sharpness (Lee and
Herrman, 2016; Mandrile et al., 2018; Zhang et al., 2012a, 2012b). The
orientation of antimicrobial molecules to the surface of AuNPs may vary
due to the reversible physical interaction and covalent bonding of the
molecules to the metallic surface (Olavarri’a-Fullerton et al., 2011). The
consistency of the SERS signal could be influenced by the fitness of the
antimicrobial molecule to the morphology of the SERS substrate and the
distribution of nanoparticles. The imperfect homogeneous distribution
of AuNPs may cause the inconsistent distribution of hot spots due to
inconsistent reaction of antimicrobial molecules with the metallic sur-
face, consequently affecting Raman scattering effect and signal intensity
(Bastts et al.,, 2011; Lee and Herrman, 2016). The size of AuNPs
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employed for the study was monodispersed and well-controlled. How-
ever, it was not quite optimized and might have needed to increase to
move to closer to the excitation wavelength of the laser (785 nm) to
maximize local electromagnetic enhancement and thus SERS signal for
better spectral consistency and repeatability (Bastiis et al., 2011;
Amendola et al., 2017).

3.2. Development and validation of chemometric classification models

Chemometric models by applying k-nearest neighbor (KNN) and
linear discriminant analysis (LDA) algorithms were developed to classify
antimicrobial spiked samples into four sample groups at different anti-
microbial concentrations using the Raman shift region of 400-1800
cm L. The classification accuracy results of the KNN models applied to
the preprocessed spectral data of MON, DEC, and LAS are summarized in
Table 4. The selected chemometric algorithms appear to be suitable for
processing large spectral data in extracting more useful and valuable
information from such complex data and explaining the relationship
between Raman spectrum and antimicrobial concentration. The per-
formance of KNN and LDA classification models was similar when the
normalized spectral data used. However, only the KNN models are
presented in Table 3 because they showed slightly better predictive
accuracy and fewer prediction errors on the external validation samples
than LDA models. Regardless of the type of antimicrobial, all classifi-
cation models of the KNN and LDA models showed the correct classifi-
cation rates of 100% for the resubstitution method that is in general
considered to yield the underestimated misclassification rates (Johnson,
1998). In the KNN classification models, the classification accuracy of
the models became stable and higher from the number of nearest
neighbors with more than 2. For SERS spectra of all three antimicrobial
samples, the KNN models developed with a training dataset showed
excellent classification rates in the cross-validation method (100%) and
model predictions (100%) on the independent validation dataset, except
for the model for classification of DEC spiked samples in the concen-
tration range of 50-100 mg/kg (Table 4). The misclassified DEC sample
was incorrectly assigned to Group 2 that consisted of the samples with
the concentrations close to that of the misclassified sample. It may be
noteworthy that no KNN and even LDA models applied to validation
datasets misclassified any samples contaminated with the selected an-
timicrobials as antimicrobial negative (false negative). No misclassifi-
cation of antimicrobial positive samples using the SERS method is
critical, which may imply that the SERS technique would be a promising
and powerful tool for a high-throughput analysis for the rapid screening
of antimicrobial contaminated samples. This should help manage the
risk of humans and animals exposed to antimicrobial agents, thus
improving food and feed safety in the supply chains.

Table 4
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The dendrogram of cluster analysis showed a clear separation of
samples according to the type of antimicrobial when using the entire or
selected feature wavelengths and the first few principal components
with the higher eigenvalues. However, within each antimicrobial, the
classification of antimicrobial spiked samples using hierarchical Ward’s
minimum variance method was not clearly configured by the group at
different antimicrobial concentrations. Likewise, antimicrobial spiked
samples were explicitly assigned to the predefined group according to
the type of antimicrobial on the scatter plot created with the first two
principal component scores. The results are in good agreement with the
previous study reported by Omar et al.?° In their study, near- and mid-
infrared spectroscopic techniques successfully classified different feed
additives containing the same or different coccidiostats as an active
substance in principal component analysis (PCA) and partial least
square-discriminant analysis (PLS-DA) models for training and valida-
tion datasets. They concluded that all ingredients of the feed additives
could contribute to a high correct classification accuracy of the devel-
oped models for the products and active ingredients, which is similar to
what is seen in the present study. However, as observed in cluster
analysis, the samples within each antimicrobial were not precisely
clustered to the different concentration groups. Meanwhile, the canon-
ical discriminant scores derived from linear discriminant analysis on the
selected wavelengths that were also used to build a scatter plot enabled
us to differentiate among groups of antimicrobial spiked samples
(Fig. 3). The scatter plot created by the first two canonical discriminant
variables with higher discriminating power that is the combination of
the original variables (feature wavelengths) effectively classified the
antimicrobial contaminated samples into the predefined different
groups. Although the pattern of the scatter plot is unique for each
antimicrobial, the plot appeared to show the actual distance between the
groups with keeping the samples within the same group closer together
and grouping the samples with different antimicrobial concentrations
and unique spectral properties remotely in the reduced, two-
dimensional space. Such observations seem to be in a good agreement
with the classification results of the chemometric classification models
developed with SERS spectral data. As a result, no regions were found
that showed the overlap among the groups in all the scatter plots by the
principal components and canonical discriminant scores (Fig. 3).
Regardless of the type of antimicrobial, the first two canonical variables
were statistically significant (p < 0.001) and largely contributed to the
discrimination among different concentration groups, explaining more
than 95% of the total variation in normalized spectral data.

3.3. Development and validation of chemometric quantification models

Different chemometric methods including multiple linear regression

Correct classification rates of antimicrobial contaminated groups at different concentrations based on KNN algorithm applied to the normalized spectral data“.

Antimicrobial Group (concentration, mg/kg) Total no. of samples Training sample Validation sample False negative error (%)"
% n % n

MON 1 (0.0-1.0) 18 100.0 12 100.0 6 0.0
2 (5.0-10.0) 27 100.0 21 100.0 6 0.0
3(12.5-17.5) 27 100.0 21 100.0 6 0.0
4 (20.0-50.0) 27 100.0 21 100.0 6 0.0

DEC 1 (0.0-1.5) 18 100.0 12 100.0 6 0.0
2(3.0-10.0) 27 100.0 21 100.0 6 0.0
3 (15.0-25.0) 27 100.0 21 100.0 6 0.0
4 (50.0-100.0) 27 100.0 21 50.0 3 0.0

LAS 1 (0.0-2.5) 18 100.0 12 100.0 6 0.0
2 (5.0-20.0) 27 100.0 21 100.0 6 0.0
3 (30.0-50.0) 27 100.0 21 100.0 6 0.0
4 (75.0-150.0) 27 100.0 21 100.0 6 0.0

@ KNN, K-nearest neighbor.

b A false negative error (%) was calculated by dividing the number of misclassified contaminated samples as negative (Group 1) using the model by the total number

of contaminated samples (Groups 2, 3, and 4).
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Fig. 3. The scatter plots crated with the first two principal component (PC) scores for the type of antimicrobial (A) and two canonical discriminant scores (CAN) for
the different concentration groups within each antimicrobial: (B), monensin (MON), (C), decoquinate (DEC), and (D) lasalocid (LAS). Error bars represent 95%

confidence intervals of the PC scores.

(MLR), partial least squares regression (PLSR), and principal component
regression (PCR) for SERS spectral data at Raman spectral range of
400-1800 cm ™! were used to develop the calibration models to correlate
Raman spectra with antimicrobial concentrations in reference standard
solutions and spiked sample extracts. The applied chemometric tech-
niques used the spectral regions and characteristic peaks highly corre-
lated with the reference values and chemical features induced by an
antimicrobial presence so that it may allow differentiating a subtle dif-
ference between contaminated and non-contaminated samples as well as
contaminated samples for quantification of the target antimicrobials in
actual samples. The relationships between actual concentrations of each
antimicrobial and predicted values by the chemometric models on SERS
spectral data are presented in Figs. 3 and 4 and Fig. S2—S4. The results of
statistical analysis appeared to be largely influenced by the type of
antimicrobial and the chemometric method.

Fig. 4 shows the relationships between actual concentrations of
standard solutions for each antimicrobial and predicted values by MLR
models built on SERS spectral data. The performance of MLR models was
not significantly different among antimicrobials. MLR calibration
models displayed high predictive accuracy, low error rate, and good
regression quality, which appeared to be comparable to HPLC reference
methods employed for the study in the range of low antimicrobial
concentrations (Table 2). Other PLSR and PCR calibration models also
gave equal predictability and satisfactory statistical results (data not
shown). As seen in Fig. 4, MLR calibration models showed high 72 values
(0.989 for MON, 0.978 for DEC, and 0.967 for LAS) and low RMSEC
values (0.247 mg/kg for MON, 0.326 mg/kg for DEC, and 0.311 for
LAS). The slopes of all MLR models were in the range of 0.915-976,
indicating the acceptable quality of the regression while the limit of
detection (LOD) and the limit of quantitation (LOQ) were in the ranges
of 0.381-0.506 mg/kg and 1.000-1.488 mg/kg, respectively. These
observations seem to allow us to infer that the proposed spectroscopic
method is as accurate as HPLC methods for standard solutions con-
taining low concentrations of the selected antimicrobials.

However, the chemometric models developed on the SERS spectral of
spiked sample extracts produced different statistical results depending
on the type of antimicrobial and chemometric algorithm. Of chemo-
metric quantification models for MON and DEC spiked sample extracts,

MLR and PLSR models for SERS spectral data displayed good regression
quality, high predictive accuracy, and low predictive error. However,
the predictive accuracy and error rate of PCR models for MON and DEC
were far less satisfactory compared to those of MLR and PLSR models.
Likewise, in predicting LAS concentrations in spiked sample extracts for
both training and validation datasets, the MLR and PLSR models per-
formed much better than the PCR model. In the MLR model, the input
variables (wavelengths) were selected through a stepwise regression
variable selection and R? selection procedures. The selected wave-
lengths were further examined to remove any collinearity among the
wavelengths and model overfitting problems as described in our previ-
ous study (Lee et al., 2014). All MLR models for the spectra could ac-
count for more than 85% of the variance in the spectral data (Fig. 5). The
MLR models for the training datasets of antimicrobials yielded very high
r? values of greater than 0.974 and acceptable error rates (RMSEC =
0.912-7.365 mg/kg). The validation datasets applying to the MLR
calibration models produced slightly lower performance values, but still
acceptable levels of predictive accuracy and error rates (2 =
0.856-0.932 and RMSEP = 3.877-18.234 mg/kg). Likewise, the MLR
models for the training and validation datasets also displayed acceptable
slopes of the linear regressions with good linearity in the ranges of
0.974-995 and 0.955-0.978, respectively. The selected wavelengths as
input variables in the MLR models were certainly relevant to chemical
functional groups of antimicrobial molecules and also presumably those
of other molecules extracted from feed samples. These results indicate
that the MLR models developed with SERS spectra could reasonably and
accurately predict a certain level of antimicrobial concentration in the
feed sample extract if further improvement and optimization are ach-
ieved in instrumentation and experimental conditions. However, as
found in our previous works with SERS, the MLR modes were not very
accurate in predicting lower concentrations in spiked sample extracts
below or around the US Food and Drug Administration (FDA) Level of
Concern for each antimicrobial (FDA, 2020). Such discrepancy between
predicted and reference values at lower concentrations in the spiked
sample extracts may be partially attributed to the absorption variation of
antimicrobial molecules on or in the proximity of active sites (hot spots)
on AuNPs due to competitive binding of other bioactive molecules in the
extracts (Chen and Liu, 2012; Lee and Herrman, 2016; Wang et al.,
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Fig. 4. Linear regression plots between predicted values by multiple linear regression (MLR) models built on SERS spectral data and HPLC reference values for (A)
monensin (MON), (B) decoquinate (DEC), and (C) lasalocid (LAS) in standard solutions: LOD, limit of detection (mg/kg); LOQ, limit of quantitation (mg/kg); RMSEC,

root-mean-square error of calibration (mg/kg).

2010). Besides, Raman laser penetration depth is limited, so that SERS
may not be able to fully evaluate internal chemical compositions of a
sample extract although such a limit is not imminent for
high-concentration samples and standard solutions.

The PLSR, a quantitative regression algorithm, employed several
factors to develop the calibration model that could extract almost all
information on the entire range of SERS spectra in predicting antimi-
crobial concentration in a feed sample extract. The PLSR is a comparable
regression algorithm to PCR, but it’s more powerful and often produces
more valid statistical inference (Lee et al., 2014; Osborne et al., 1993).
The predicted residual error sum of squares (PRESS) was used to
determine the optimum number of factors for the model based on the
plot of PRESS and the number of factors as well as the p-value of the
model residuals resulting from leave-one-out cross-validation method
for the training dataset. More factors were needed for the PLSR model
for LAS in spiked sample extracts whose quality was not as good as that
of the other PLSR models for MON and DEC. As seen in the MLR models,
the PLSR models for all antimicrobials yielded higher r? values
(0.971-0.994) and lower error rates (RMSEC = 1.065-7.713 mg/kg) for
the training datasets (Fig. 5). PLSR models applied to the validation

10

datasets also produced comparable results to the MLR models regardless
of the type of antimicrobial, overall resulting in high r* values
(0.840-0.920) and low error rates (RMSEP = 4.068-18.474 mg/kg)
(Fig. 5). The lower predictive accuracy and the higher error rate of the
PLSR calibration models predicting the validation samples of LAS was
somewhat unexpected. This may indicate that the resulting SERS spectra
of LAS samples were less reproducible and probably acquired under
inconsistent experimental conditions because the PLSR models are
usually more vulnerable for small spectral variations to non-target
analytes in the sample than other regression algorithms (Kim et al.,
2008). The PCR models for all antimicrobials revealed much poorer
predictive power and performance compared to the MLR and PLSR
models, accounting for only 47.4-61.5% of the total variation in SERS
spectra. The poor performance and inaccuracy of PCR models may be in
part attributed to that PCR algorithm is a decomposition technique
focusing on only the variance of the spectral data and is easily influenced
by spectral similarity, low signal to noise ratio, poor repeatability of
spectra, and interference of characteristic Raman bands from coextracts
compared to other algorithms (Cramer, 1993; Osborne et al., 1993).
Although somewhat depending on chemometric method and the
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Fig. 5. Statistical results of multiple linear regression (MLR), partial least
squares regression (PLSR), and principal component regression (PCR) models
on SERS spectra for predicting concentrations of (A) monensin (MON), (B)
decoquinate (DEC), and (C) lasalocid (LAS) in feed sample extracts: RMSEC,
root-mean-square error of calibration (mg/kg); RMSEP, root mean-square error
of prediction (mg/kg); LOD, limit of detection (mg/kg); LOQ, limit of quanti-
tation (mg/kg); RPD, ratio of the standard deviation of the reference values to
the standard error of cross-validation values; Std error, standard error of the
mean difference between reference values and predicted values of SERS; r,
Pearson correlation coefficient.
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type of antimicrobial, the results of paired sample t-test for the valida-
tion datasets of all antimicrobials showed no statistically significant
difference in antimicrobial concentrations in spiked sample extracts
between the means of the reference HPLC method and SERS method (p
> 0.05) (Fig. 5). Compared to antimicrobials in standard solutions
(Fig. 4), the MLR and PLSR models displayed somewhat higher LOD and
LOQ values in the ranges of 3.7-10.0 mg/kg and 10.8-26.3 mg/kg for
MON and DEC (Fig. 5). Nevertheless, these findings indicate that the
developed models might be still sensitive enough for screening or semi-
quantitative analysis of antimicrobials in animal feeds. As would be
expected, the standard error of paired differences between the model
predicted and reference values showed the same trend observed in the
other statistical results, that is, significantly lower in the MLR and PLSR
models. Although poor or moderate correlations of PCR models were
observed, the results of significance level (p-value) and correlation co-
efficient indicated the MLR and PLSR models yielded comparable values
to HPLC values at antimicrobial levels in spiked sample extracts,
implying a good agreement between SERS models and the reference
methods. RPD (the standard error of cross-validation against the stan-
dard deviation of the reference values) values of the MLR models were
3.50 for MON and 3.21 for DEC. The PLSR model also showed a RPD
value of 3.34 and 3.26 for MON and DEC, respectively. These high RPD
values of greater than 3.0 indicated that such chemometric models may
be effectively used for screening of antimicrobial contaminated feed or
food samples. Although only a little study has been done to assess the
utility of SERS for antimicrobial detection in feed samples, the current
results of chemometric quantification models displaying high predictive
accuracy and performance in determining antimicrobial concentration
in standard solutions and spiked sample extracts are likely comparable
to SERS methods for the analysis of various antimicrobials proposed in
other previous studies (Table 5). The findings and inferences from the
present research also clearly demonstrated SERS could be considered as
an efficient and reliable analytical tool for antimicrobial quantification
similar to other conventional or advanced spectroscopic methods when
it comes to analytical sensitivity, cost-effectiveness, analytical conve-
nience, and potential applicability for antimicrobial analysis.

4. Conclusion

In conclusion, the size-and shape-controlled gold nanoparticles
(AuNPs) as a SERS agent with good binding affinity and chemical re-
action with antimicrobial molecules proved to be applicable as a simple
and efficient analytical tool alternative to conventional wet-chemical
methods for rapid detection and screening of antimicrobial residues in
regulatory feed samples with complex constituents. The SERS technique
allowed direct and selective detection and characterization of selected
antimicrobials and yielded discerning characteristic peaks proportional
to the spiking level of the antimicrobials. The chemometric models for
classification and quantification of antimicrobial levels exhibited high
predictive accuracy and acceptable error rate with no misclassification
of validation samples as antimicrobial negative below the level of reg-
ulatory concerns. The features and traits of SERS platforms coupled with
chemometrics and a simple extraction procedure are worthwhile to be
considered when it’s required to develop a simple, rapid, and non-
destructive spectroscopic method for routine analysis and real-time
monitoring of antimicrobial contaminated samples at critical locations
in the food or feed distribution systems. The methodology and impli-
cations from the study could be used as the basis for further researches
on early screening of antimicrobial residues in various feed and food
matrices. However, we think the size of AuNPs could have been better
optimized and more dispersed to move the peak absorption wavelength
of the particles close to the excitation wavelength of the laser to increase
local electromagnetic enhancement for a higher quality of SERS signal.
It’s also worthwhile to further simplify a sample preparation procedure
in combination with an effective approach of various chemometric
methods in the future. For improvement of the applicability of AuNPs in
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Summary of SERS methods employed for analysis of different antimicrobials in previous studies.

Antimicrobial Sample matrix or SERS substrate Selected characteristic Detection limit
solution peaks
Furadantin, Formamide, ethanol, &  Au nanoparticles 1008 & 1162 cm™* 5 mg/kg
& furaltadone (Xie et al., 2012) acetone
Tetracycline (Li et al., 2011) Milk Ni/Au core-shell microparticles 1595 & 1320 cm ™! 0.1 mg/L >
0.98)
Enrofloxacin, ciprofloxacin, & chloramphenicol (He et al.,  Ethanol Dendritic Ag nanosubstrates 1392 cm™! 20 pg/L (F >
2010) 0.98)
Furazolidone, & malachite green (Zhang et al., 2012a) Fish Klarite Substrate, 1332, 1394, 0.2-1.0 mg/kg ?
& Q-SERS substrate 1606, &1615 em ! > 0.92)
Leucomalachite green Fish Q-SERS substrate 432, 1170, 1360, 1-2ng/g o>
& malachite green (Zhang et al., 2012b) & 1612 cm™* 0.733)
Chloramphenicol, Fish Klarite Substrate 1170, 1350, 1588, 20-50 ng/mL G
& crystal violet (Lai et al., 2011) & 1601 cm™! > 0.81)
Roxarsone Poultry feed additives Silver/Polydimethylsiloxane 792 cm ™!
& 4-arsanilic acid (OlavarriaFullerton et al., 2011) Nanocomposites
Methotrexate, aminopeni-cillanicacid, ampicillin- Water DisposableAg-graphenesensor 762, 1112, 1594, 0.3-0.8 nM
trihydrate, & penicillin G (Li et al., 2013) & 1000 cm™!
Penicillin G (Clarke et al., 2005) Fermentation broths Ag colloids 1005, 1220, 1380, 1475, 50 mM
&1606 cm !
antimicrobial analysis, adsorption and interaction mechanism between References

target analytes and the surface on the particles needs to be better un-
derstood to design SERS substrates with higher selectivity and sensi-
tivity. In the final analysis, SERS technique and SERS-based calibration
models would be more practically applicable for antimicrobial analysis
in the complex sample matrices only after some constraints and issues
raised by the previous researches are solved including low-to-moderate
repeatability and reproducibility of Raman spectra, expensive SERS
substrate, unstable nanostructure, inappropriate sample preparation,
and misapplication of chemometric methods. With further improvement
and advancement in instrumentation and spectral data treatment, the
SERS technique can certainly better serve as a more efficient and
powerful tool for quality to help improve the safety of feed and food
products supplied to animals and humans.
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