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Abstract

High starch content, simplicity of cultivation, and high productivity make potatoes (Solanum tuberosum) a staple in the diet of
people around the world. On average, potatoes are composed of 83% water and 12% carbohydrates, and the remaining 4%
includes proteins, vitamins, and other trace elements. These proportions vary depending on the type of potato and location where
they were cultivated. At the same time, the chemical composition determines the nutritional value of potato tubers and can be
proved using various wet chemistry and spectroscopic methods. For instance, gravity measurements, as well as several different
colorimetric assays, can be used to investigate the starch content. However, these approaches are indirect, often destructive, and
time- and labor-consuming. This study reports on the use of Raman spectroscopy (RS) for completely non-invasive and non-
destructive assessment of nutrient content of potato tubers. We also show that RS can be used to identify nine different potato
varieties, as well as determine the origin of their cultivation. The portable nature of Raman-based identification of potato offers
the possibility to perform such analysis directly upon potato harvesting to enable quick quality evaluation.
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Introduction worldwide [1]. Substantial differences in climate and soil pro-

files required the development of new potato varieties that

Potatoes (Solanum tuberosum) were originally domesticated
in Southern Peru, Northwestern Bolivia, around 5000 B.C.
After the Columbian exchange of agricultural goods with the
New World, potatoes spread across Europe and Asia.
Nowadays, potatoes are grown in more than 160 countries
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would produce high yields in different sites around the world.
As a result of centuries of crossbreeding, there are thousands
of varieties of potatoes grown on six different continents.

Currently, potato variety identification is carried by horti-
cultural experts and potato breeders based on morphological
traits (plants and tubers) and molecular characterization
(mainly DNA-based) [2, 3]. This expertise requires substantial
academic training and professional experience. DNA-based
fingerprinting is a good complementary (less subjective, and
not affected by the environment) alternative to the morpho-
logical identification of potato. However, DNA-based finger-
printing is time and labor-consuming and not portable. These
limitations substantially limit the use of DNA-fingerprinting
for routine variety identification in agriculture [4].

In addition to identification, it is highly important to deter-
mine nutrient content of potato. There are several wet labora-
tory assays that can be used to assess the nutrient composition
of tubers [5]. For instance, starch content in potato can be
determined using colorimetric/fluorometric assays [6]. The
colorimetric approach is based on enzymatic conversion of

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00216-020-02706-5&domain=pdf
https://doi.org/10.1007/s00216-020-02706-5
mailto:dkurouski@tamu.edu

R. Morey et al.

starch into a colored reaction product. The change in color is
then measured using absorption spectroscopy. The Dumas
combustion method is typically used to probe protein content
via analysis of the total nitrogen amount in the sample [7].
Although broadly used, these approaches are destructive,
time, and labor-consuming. It has been suggested that
protein and starch content of potato can be determined
using Near-infrared (NIR) spectroscopy [8—12].
However, the use of NIR is limited to only freeze-dry
samples, as the accuracy of this approach drastically
decreases with an increase in water content in the sam-
ple. Therefore, NIR did not find broad applicability for
the analysis of nutrient content of potatoes.

A useful and efficient alternative is presented in Raman
Spectroscopy (RS) [4]. RS is an analytical technique that is
based on inelastic light scattering of molecules that are being
excited to higher vibrational or rotational states [13]. Once
collected, the inelastically scattered photons provide informa-
tion about the chemical structure of the sample. We have
previously shown that RS could be used for confirmatory
identification of six different varieties of corn as well as for
determination of their nutrient content [14]. One could envi-
sion that this spectroscopic approach opened a new paradigm
in the evaluation of the economic value of agricultural prod-
ucts. The question to ask is whether RS can be used to identify
different potato varieties, as well as to access the nutri-
ent content of potato tubers. The main components of
the average potato tuber are water (83%), carbohydrates
(~12%), and proteins (4%) and other trace nutrients (~
1%) [15]. These proportions vary depending on the type
of potato and location where they were cultivated. In
the current study, we used a hand-held Raman spec-
trometer to investigate the possibility of Raman-based
identification of nine different potato varieties. We have
also explored the possibility to track the geographic or-
igin of potato cultivation based on spectroscopic signa-
tures of potato tubers.

Materials and methods
Potato varieties and locations

All potato varieties (Table 1) were planted and harvested in
the State of Texas at two different locations: Springlake (34°
8'6.97"N, 102°21' 51.18" W) and Dalhart (35° 58" 15.31" N,
102° 44’ 36.33" W), which are both in Northwest Texas. The
potatoes were planted in a randomized complete block design
with four replications, tuber seed pieces at a 15.2-cm depth in
the field. Each plot consisted of two rows with a total number
of 28 plants (Springlake) and 24 plants (Dalhart) (Electronic
Supplementary Material (ESM) Table S1). The potato seed
was protected (seed treatment) before planting. Fertilizers,
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insecticides, fungicides, and herbicides were applied to ensure
their growth (details included in the ESM). They were irrigat-
ed using a center pivot system and then were harvested using a
two-row drag digger and bagged by hand. The potato growing
locations were subject to different environmental conditions
(Table 1). At harvest time, a sample of ten tubers per rep per
location per clone was collected. Weight per tuber ranged
between 113.4-170.1 g (this corresponds to a tuber grading
class within marketable tubers). The tubers were maintained at
room temperature (22 °C) until it was time to analyze them.

Raman spectroscopy

A hand-held Agilent Resolve SORS instrument was used to
obtain spectra from the potato samples. This spectrometer has
a spectral resolution of 15 cm™ ' and an 830-nm laser excita-
tion. The instrument collects three types of spectra: “surface,”
“offset,” and “spatially offset Raman spectra (SORS)” [16].
The “surface” spectra are collected from the surface of the
sample. We avoided using surface spectra for our study be-
cause of possible soil or organic contaminants that could be
present on the surface of analyzed potato tubers. One can
imagine that such contaminants could cause drastic spectro-
scopic changes and, consequently, abstract analyses of the
nutrient content of tubers. The “offset” is the spectra acquired
from the inner part of the sample, while “SORS” denotes the
difference between the surface and the offset that is performed
by the automated subtraction of “surface” from “offset” spec-
tra. If the chemical structure of the surface and inner part of the
specimen is different, such spectral subtraction becomes ex-
tremely practical to enable clear visualization of a spectro-
scopic signature of the inner part. This approach is used for
the detection of drugs and explosives in non-transparent con-
tainers and bags [17—19]. However, if the chemical structure
of'the surface and inner part of the sample is similar, like in the
case of potato, the instrument does not perform an accurate
spectral subtraction to generate consistent SORS results.
Therefore, in our study, we used the ‘offset’ rather than
SORS data. For each offset scan, an offset position of 3.5 to
4 mm (depending on the variety) was used, along with a 2-s
integration time with 30 accumulations. Spectra were taken
from the intact potato surface without peeling or cutting of the
tuber. Every tuber was scanned a couple of times in spatially
non-overlapping locations. There were 18 sets of data, each
categorized by variety and location, and 40 to 60 spectra were
acquired from each data set. The spectra were then averaged
and processed using multivariate statistical analysis.

It should be noted that analyzed potato tubers had substan-
tial differences in coloration (some tubers had dark color and
some light yellow color). One can imagine that dark color
tubers will absorb more and, consequently, scatter less light
compared to the yellow or pale color tubers. Since RS is based
on inelastic light scattering, dark color tubers should produce



Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using...

less intense spectra (under the same experimental conditions)
compared with the light color tubers (ESM Fig. S1).
Therefore, observed variations in spectral intensities
likely originate from different light absorption and scat-
tering properties of these tubers. This evidence suggests
that raw spectra cannot be directly used for analysis of
nutrient content of potatoes (discussed below). This
problem can be solved by spectral normalization.
Therefore, we normalized all reported spectra in this
manuscript on the intensity of 1460 cm '. This vibra-
tional band can be assigned to CH and CH, vibrations that are
present in nearly all classes in biological molecules, which
makes such normalization the least biased to any of the ana-
lyzed classes of nutrients.

Multivariate statistical analysis and analysis
of variance

The PLS Toolbox software was used to perform partial least-
squares discriminant analysis (PLS-DA) for all collected off-
set spectra. The spectra were pre-processed by taking the 2nd
derivative of all intensity values (3rd polynomial order and a
filter length of 51) and then centered on the mean. A true
positive rate (TPR) was reported for each category based on
the accuracy rate of the predictions. This process was used to
determine the difference between the varieties and between
the locations.

We also performed analysis of variance (ANOVA) in
MATLAB to compare the content of starch,
phenylpropanoids, and carotenoids between different po-
tato varieties. Reported ANOVAs compared the intensi-
ty of peaks at 479 cm ' and 1125 cm™' to analyze the
starch, 1600 and 1630 cm™ ' phenylpropanoid, and the peak at
1527 cm ' to access the carotenoid contents. Lastly, ANOVA
on 1660 cm™ ' was used to determine protein content in the
analyzed potato tubers.

Table 1
(Springlake and Dalhart) in 2019

Starch content determination

Homogenous starch gel samples were made by mixing vari-
ous amounts of potato starch with 50 mL distilled water and
.25 mL dimethyl sulfoxide. The starch was measured to 4.5 g
for the 9% sample, 6.0 g for the 12% solution, and so on. The
solutions were then heated in an Erlenmeyer flask with a stir
bar. When the proper temperature was reached, the solution
turned to gel and was removed from heat. The gel was cooled
overnight and scanned the next day using RS. The intensity of
the peak at 479 cm™ ' was measured and a calibration curve
was made from the calculated averages and standard devia-
tions of the data (ESM Fig. S2).

Results and discussions

We collected more than 400 spectra from tubers of nine dif-
ferent potato varieties. Six out of nine varieties are mainly
used for the fresh potatoes, which tend to be sold directly to
the consumers (ESM Table S1). They include Red LaSoda
(RLS), Yukon Gold (YG), Russet Norkotah (RN), Sierra
Rose/ATTX961014-1R/Y (SR), COTX04050s-1P/P (P/P),
and PORTX03PG25-2R/R (R/R). The first three are commer-
cial, public reference potato varieties with red, yellow, and
russet skin, respectively, while the last three (also
COTX09022-3RuRE/Y) were developed by the Texas
A&M university Potato Breeding Program and have different
combinations of skin and flesh color. The latter four of the
nine varieties are processing varieties including Russet
Burbank (RB) (used mainly to make French fries), Atlantic
(AT) (used to make potato chips) and COTX09022-3RuRE/Y
(Ru/Y) (dual purpose, fresh or processing), ESM Table S1.
Raman spectra collected from tubers exhibited vibrational
bands originating from carbohydrates, carotenoids,
phenylpropanoids, and proteins (Fig. 1, Table 2, ESM Fig.

Names, abbreviations, and tuber descriptions of the potato varieties used in our study. The potato trials were planted at two locations in Texas

Clone name Code  Source Tuber skin color Tuber flesh color Tuber shape Market class  Market
subclass

Red LaSoda RLS  Reference commercial Red White Round Fresh

Yukon Gold YG Reference commercial ~ Yellow Yellow Round Fresh

Sierra Rose™ SR TAMU—commercial ~ Red Yellow oblong Fresh

(ATTX961014-1R/Y)

COTX04050s-1P/P P/P TAMU—experimental Purple Purple Round Fresh

PORTXO03PG25-2R/R R/R TAMU—experimental Red Red Fingerling Fresh

Russet Burbank RB Reference commercial Russet White Oblong to long  processing French fries

Russet Norkotah RN Reference commercial Russet White Oblong to long  Fresh

Atlantic AT Reference commercial White White Round Processing Chipper

COTX09022-3RuRE/Y Ru/Y TAMU—commercial Russet with red eyes Yellow Round to oblong Dual purpose
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S1). We found that spectroscopic signatures of SR and YG
appeared to be very similar, whereas Ru/Y exhibited lower
intensities at 1054, 1085, and 1126 cm™'. We have also ob-
served that intensities of 1261 and 1340 cm ™' were lower in
the spectrum of Ru/Y comparing with the intensities of these
bands in the spectrum of SR and YG. Much stronger spectral
differences have been observed between the spectra collected
from P/P, R/R, and RLS. Next, we found that the spectra of
AT exhibited much more intense carbohydrate bands (479,
865, 940, 1054, 1085, 1126, 13831398 cm ') when com-
pared to the spectra of RB and RN. Lastly, we found that the
intensities of the phenylpropanoid bands gradually decreased
in the order of RN, RB, and AT. These spectral changes in
intensities suggest variations of nutrient content in the tubers.
Summarizing spectral changes observed for nine different

potato varieties, we can conclude that we found a gradual
decrease in the intensities of carbohydrate bands (479, 865,
940, 1054, 1085, and 1126 cm ') from SR and YG to RLS
and Ru/Y to AT, P/P, R/R and RB to RN. We also found that
spectra of P/P and R/R had a substantially large intensity of
carotenoids (1527 cm ), relative to the intensity of this band
in the spectra collected from other potato varieties. Intensity of
phenylpropanoid bands (1600—-1630 cm ') drastically de-
creased from the spectra of R/R to P/P and then to RLS.
Next, we observed a graduate decrease in the intensity of
phenylpropanoid bands from RLS to SR, RN, YG, RB, Ru/
Y, and AT.

ANOVA was used to compare relative intensities of the
described above vibrational bands, Fig. 2. Results demon-
strate that the intensity of 1126 cm™' band in the spectra of

Fig. 1 Raman spectra of nine
different potato varieties A _Srnow ~ro o SHECB3E 2338 & 383
separated into three groups (a—c) IS5V KRR 83 229 --Y¥ Y 2203 0 000
for clarity of visualization.
Asterisk denotes a 1460-cm™'
peak was used to normalize
spectra
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SR and YG are stronger when compared to the intensity of
other potato varieties. This band was also found to have the
lowest intensity in the spectrum of RN. This suggests that SR
and YG have the highest starch content, whereas RN has the
lowest starch content.

ANOVA of carotenoids content revealed the presence of
two different groups of potato with respect to its carotenoid
content. Specifically, P/P exhibited significantly larger carot-
enoid content relative to all other potato varieties, whereas
carotenoid content in all other potato varieties is nearly iden-
tical. It is important to note that two out of eight analyzed
potato varieties have colored flesh, whereas the other six va-
rieties exhibit similar white flesh color. At the same time, only
one of the colored potatoes (P/P) exhibited distinctly different
carotenoid content. This finding indicates that carotenoids are
present in this purple flesh potato and likely contribute to
intensity the purple color, The purple color of P/P and red
color of R/R is caused by presence of anthocyanins, molecules
with distinctly different chemical structure. These results
clearly demonstrate that Raman-based analysis of nutrient
content cannot be misled by sample coloration. On the

opposite, RS can be used to reveal the underlying cause of
coloration and distinguish between different chromophores of
potato.

Intensity of the peak at 1600 cm ™' can be used to estimate
phenylpropanoid content in the potatoes. It can be noticed that
R/R and P/P have a considerably higher intensity of
1600 cm™' comparing with the rest of potato varieties. This
suggests the highest content of phenylpropanoids in these two
potato varieties. It should be noted that R/R and P/P clones are
rich in anthocyanins (phenylpropanoids). The purple color is
mainly due to delphinidin and the red color to pelargonin. AT
and Ru/Y exhibit the lowest phenylpropanoid content. RB,
RN, YG, SR, and RLS have slightly larger phenylpropanoid
content relative to AT and Ru/Y and lower than P/P. RLS and
SR are not statistically different from each other because of a
small overlap of confidence intervals between the intensity of
1600 cm™ ' band that has been observed between Raman spec-
tra collected from those two potato varieties. One can con-
clude that from a perspective of phenylpropanoid content, all
analyzed potato varieties fell into three statistically different
classes: R/R with the highest phenylpropanoid content, P/P

Table 2 Assignment of chemical compounds based on the vibrational mode corresponding to each Raman shift wave value

Band (cm™ ') Vibrational mode Assignment

441 Skeletal modes of pyranose ring Carbohydrates [20, 21]

479 C—C-0 and C-C—C deformations; Related to glycosidic ring skeletal deformations Carbohydrates [20]
5(C—C—C) + T(C-0) Scissoring of C—C—C and out-of-plane bending of C—O

523 5(C—C-0) + T(C-O) of carbohydrates Carbohydrates [20]

578 v(C-0) + v(C-C) + d(C-O-H) Cellulose, phenylpropanoids [22]

615 5(C—C-0) of carbohydrates Carbohydrates [20]

717 5(C—C-0) related to glycosidic ring skeletal deformations Carbohydrates [20]

768 5(C—C-0) Carbohydrates [20]

865 5(C—C-H) + 6(C—0O-C) glycosidic bond; anomeric region Carbohydrates [20]

940 Skeletal modes; 5(C—O—C) + 8(C—O-H) + v(C-0) «-1,4 glycosidic linkages Carbohydrates [23]

1007 In-plane CH3 rocking + C—C Carotenoids [24]

1016 C-OH Carbohydrates [25, 26]

1054 Vv(C-0) + v(C-C) + 5(C-O-H) Carbohydrates [20]

1085 Vv(C-0) + v(C-C) + 5(C-O-H) Carbohydrates [20]

1126 Vv(C-0) + v(C-C) + 5(C-O-H) Carbohydrates [20]

1153 v(C-0-C), v(C—C) in glycosidic linkage, asymmetric ring breathing Carbohydrates [27]

1208 aromatic ring modes of phenylalanine and tyrosine; symmetric Proteins [28], Phenylpropanoids [29]

O-CH3 wag + C-O-H bending

1261 5(C—C-H) + 5(O-C-H) + &(C-O-H) Carbohydrates [20, 30]

1340 v(C-0); 6(C-O-H) Carbohydrates [20]

1383 5(C-O—H)——coupling of the CCH and COH deformation modes Carbohydrates [20]

1398 5(C-C-H) Carbohydrates [20]

1460 5(CH) + &(CH2) + 3(C-O-H) CH, CH2, and COH deformations. Aliphatic [20]

1527 —C=C- Carotenoids [31]

1600 v(C—C) aromatic ring + o(CH) Phenylpropanoids [32, 33]

1630 C=C—C(ring) Phenylpropanoids [34]

1660 amide I (C=0) Proteins [13]
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Fig. 2 Means (circles) and confidence intervals for the intensities of the
potato spectra at 1126 cm ! (starch), 1527 cm ! (carotenoids), 1600 cm !
(phenylpropanoids), and 1660 cm™" (proteins). ANOVA of starch re-
vealed 3 groups of potato varieties (blue, red, and black) with significant-
ly different starch contents. ANOVA of carotenoids revealed 2 groups of
potato varieties (blue and red) with significantly different carotenoid

with medium and AT, RB, RLS, RN, SR, Ru/Y and YG with
low phenylpropanoid content.
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contents. ANOVA of phenylpropanoids revealed 3 groups of potato va-
rieties (blue, red, and black) with significantly different phenylpropanoid
contents. ANOVA of proteins revealed 2 groups of potato varieties (blue
and red) with significantly different protein contents. Multiple colors
indicate a member of a group that has overlap between two separate
groups

Finally, the intensity of a vibrational band at 1660 cm’!

was used to determine the protein content in potato tubers.

Table 4 The confusion table and percent accuracy for each variety

Table 3 The average

specific gravities and Variety Specific gravity % solids N TPR% AT P/P R/R RB RLS RN SR RuY YG

concentration of solids of

each variety from both AT 1.065 14.4 AT 60 650 39 0 0 10 2 1 2 6 0

locations P/P 1.064 13.8 PP 39 100.0 03 0 o0 0 I 0 o0 0
RR 1.059 13.0 R/R 40 100.0 0 0 40 1 2 0 0 0 0
RB 1.061 13.4 RB 60 70.0 6 0 0 42 1 3 0 5 0
RLS 1.056 12.6 RLS 40 70.0 3 0 0 4 28 17 1 2
RN 1.059 13.1 RN 58 845 2 0 0 0 O 49 0 9 0
SR 1.066 14.3 SR 40 60.0 0o 0 0 0 3 24 1 4
Ru/Y 1.074 15.7 RwY 60 633 9 0 0 3 1 32 38 0
YG 1.070 15.0 YG 40 850 1 0 0 0 3 0 5 0 34
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ANOVA results showed that R/R, RLS, SR, and YG had a
significantly higher content of proteins relative to RB potato
variety. Concentration of protein in AT, P/P, RN, and Ru/Y
was not significantly higher relative to RB and not significantly
lower comparing with R/R, RLS, SR, and YG. Nevertheless,

Table 5 Confusion table for the fresh market potatoes and the percent
accuracies for each location

Raman Shift (cm)

visual analysis of ANOVA results suggested that all nine potato
varieties could be divided into two classes based on their pro-
tein content. AT, RB, RN, and Ru/Y could be assigned to class
1 (low protein content), whereas P/P, R/R, RLS, SR, and YG
belong to class 2 (high protein content).

Table 6 Confusion table for the chipper potatoes and the percent
accuracies for each location

N TPR % Springlake Dalhart

N TPR % Springlake Dalhart
Springlake 160 89.4 143 25 Springlake 238 89.9 214 41
Dalhart 159 84.3 17 134 Dalhart 155 90.9 24 141
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Table 7 Percent

accuracy values in Variety Springlake Dalhart

percentages for each

variety when they are SR 100 81.6

compared separately for YG 89.5 87.2

each location RR 94.9 825
RLS 97.4 81.1

A question to ask is whether the reported above analysis of
nutrient contact is truly unbiased if only one band from all
different bands exhibited by a certain class of molecules is
analyzed. For instance, we have analyzed the change in inten-
sity of 1126 cm™ " band to evaluate differences in carbohydrate
content, while these molecules also have bands at 479, 717,
768, 865, 940, 1054, and 1153 c¢m . In addition to
1600 cm ™', phenylpropanoids exhibit a band at 1630 cm ',
whereas carotenoids also have a band at 1000 cm . To inves-
tigate this, ANOVAs were performed on 479 and 1630 cm .
Results demonstrate nearly identical distribution of intensities
of these bands for different potato varieties, as has been ob-
served for 1126 and 1600 cm ™', respectively, ESM Fig. S3. It
should be noted that the use of 1126 cm™' band in ANOVA
allows for better differentiation between RLS and YG relative
to 479 cm™ !, At the same time, the use of 1600 cm ! enabled
better differentiation between RLS and SR comparing with
the separation achieved on ANOVA of 1630 cm '. These
results suggest that 1126 cm™' should be used for ANOVA
of carbohydrate content of potatoes, whereas 1600 cm ! is
better suitable for the analysis of phenylpropanoids. It should
be noted that a band at 1000 cm ' cannot be used as the
alternative to 1527 cm ™ for the assessment of carotenoid con-
tent because this band also present in the Raman spectra of
proteins. These findings demonstrate that ANOVA of vibra-
tional bands can be used for accurate and reliable assessment
of nutrient content of potato varieties.

Potatoes mostly consist of starch and it has to be verified of
whether the results shown in the ANOVAs are accurate. Note
that approximately 83% of the average potato contains water,
and the rest is mostly starch. Keeping this in mind, we can
conclude that the specific gravity of the potato corresponds
with the concentration of starch in water for each potato. The
average specific gravity for each variety from both locations
has been shown in Table 3. We can also look at the concen-
tration of solids in the potato to analyze starch content. This
information has been added (“% solids” category) in Table 3.

Analysis of specific gravities shows high similarity of pre-
diction of starch content to the results obtained by RS (Fig. 2).
We also demonstrated that the intensity of a 479-cm ' band
directly correlates with the starch content of the sample. For
this, four samples with 9, 12, 15, and 18% of starch were
analyzed by RS, ESM Fig. S2. Our results showed that the
intensity of479/1126 cm " linearly increased with an increase
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in the starch content of the sample. These results demonstrate
that RS can be used for highly accurate determination of the
starch content of the sample.

One may wonder whether such a clear difference in spectra
collected from different potato varieties can be used to identify
them and distinguish different potato varieties based on their
spectra. We built PLS-DA model that showed that some po-
tato varieties (P/P and R/R) can be identified with very high
accuracy (near 100%), whereas the accuracy of potato variety
prediction ranged from 60% (SR) to 85% (YG), Table 4, ESM
Fig. S4. Specifically, PLS-DA showed that all 39 spectra of P/
P and all 40 spectra of R/R were predicted correctly, which
resulted in 100% accuracy of prediction of these two potato
varieties. At the same time, 1 out of 40 YG spectra was pre-
dicted as AT, 3 as RLS, and 5 as SR, which resulted in a total
of 85% accuracy prediction of YG based on the developed
PLS-DA model. Thus, the higher number of spectra that were
miss-predicted by the PLS-DA model for each of the potato
varieties, the lower prediction score (TPR) was achieved for
that class of spectra. These results demonstrate that RS can be
used for automated identification of potato. Such potato iden-
tification can be used to sort potato upon harvesting. It can
also be used to digitize potato warehouses and storage facili-
ties, enabling automated identification of potato upon import
and export of potato tubers.

We also questioned whether RS could be used to identify
location where potato was grown. To investigate this, we
compared spectra collected from the two different potato types
(market and chipper) grown in two different locations:
Springlake and Dalhart, both located in Northwest Texas
(Fig. 3, Tables 5 and 6). Potato grown in these two locations
experienced unique environmental conditions originating
from differences in weather and soil. One can envision that
such environmental differences could result in small changes
in the nutrient composition of potato. Our results show that
PLS-DA is able to distinguish potato grown in Springlake and
Dalhart with 84.3% to 90.9% accuracy, ESM Fig. S5. These
findings demonstrate that RS can be used to predict the geo-
graphical location of potato farming.

Next, we compared the accuracy of the prediction of four
individual potato varieties grown in Springlake and Dalhart,
Table 7. Our results show that the accuracy of prediction
ranged from 81.1% (RLS, Dalhart) to 100% (SR,
Springlake), ESM Fig. S6. Thus, the accuracy of prediction
varies depending on the potato variety and location. For in-
stance, differentiation of four different potato varieties has
been higher for Springlake rather than for Dalhart.
Summarizing, we found that PLS-DA can be used for highly
accurate prediction whether individual potato varieties (SR,
YG, R/R, and RLS) were grown in Springlake or Dalhart.

In conclusion, we demonstrated that RS could be used to
accurately analyze potato nutrient composition, for potato va-
riety identification, and determine the location of their origin.
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The non-invasive and non-destructive nature of this analysis,
together with the portability of the spectrometer [35-40],
opens up a broad spectrum of opportunities for the use of
RS in potato farming.
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