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ABSTRACT: To thrive as a global civilization, food production must meet the demands
of our ever-growing population. There are more than a billion people on the planet
suffering from malnutrition through poor quality or lack of food. Nutrient content of food
can be determined by a variety of methods, which have issues such as slow analysis or
sample destruction. Near-infrared (NIR) spectroscopy is a long-standing alternative to
these methods. In this work, we demonstrated that Raman spectroscopy (RS), another
spectroscopic method, can also be used to assess the nutrient content of maize (Zea mays), one of the most widely cultivated
grains in the world. Using a handheld Raman spectrometer, we predicted the content of carbohydrates, fibers, carotenoids, and
proteins in six different varieties of maize. This analysis requires only a single maize kernel and is fast (1s), portable, noninvasive,
and nondestructive. Moreover, we showed that RS in combination with chemometric methods can be used for highly accurate
(approximately 90%) spectroscopic typing of maize, which is important for plant breeders and farmers. Finally, we demonstrate
that Raman-based approach is as accurate as NIR analysis. These findings suggest that portable Raman systems can be used on
combines and grain elevators for autonomous control of grain quality.

■ INTRODUCTION
Food quality has a direct impact on the economic growth of
nations and global food security. Therefore, food quality is
strictly regulated in many developed countries in the world.1

There are many parameters, such as nutrient content, texture,
flavor, and visual appearance, which are used to evaluate the
quality of food. However, two of them, the presence of
pathogens2,3 and nutrient content, have major impacts on
human well-being.
The nutrient content of food is determined by the amount

of carbohydrates, proteins, fibers, and oils, as well as by
vitamins and minerals present in it. Several colorimetric and
chromatographic methods can be used for quantitative
assessment of these nutrients. These methods are destructive,
time-consuming, and labor-intensive. Also, these assays require
sophisticated laboratory equipment, which is often not
available in developing countries.4 Development of near-
infrared (NIR) analyzers enabled completely noninvasive and
nondestructive assessment of nutrient content in agricultural
crops.5−9 Some nutritional qualities assayable by NIR include
moisture, starch, protein, and many others.10 This method is
also capable of determining the nutrient content of single
grains of crops such as maize or wheat.11−13

A potential alternative or complementary method to NIR is
Raman spectroscopy (RS). The Raman effect is based on the
inelastic scattering of photons by sample molecules that are
being excited to higher vibrational or rotational states.14 Thus,
RS provides information about molecular vibrations and
consequently the structure and composition of the analyzed
sample. Our group recently demonstrated that RS could be
used for confirmatory, noninvasive, and nondestructive
detection and identification of fungal diseases in wheat,
maize, and sorghum seeds.15,16 We have also shown that RS

could detect insects inside intact cowpeas with high statistical
accuracy.17 Also, using RS, we were able to diagnose nutrient
deficiency and asymptomatic Huanglongbing disease on
orange and grapefruit trees.18

In this study, we investigate whether RS could be used for
noninvasive, nondestructive, confirmatory assessment of the
nutrient content of maize, one of the most widely cultivated
cereals in the world.19 The commercial impact of maize
exceeds 50 billion U.S. dollars.20 Maize has a wide variety of
applications, including as livestock feed, raw material in
industry, biofuel, and a human food. We show that Raman-
based approach is fast and self-sufficient for the rapid
assessment of nutrients in food. We also show that in addition
to nutrient content assessment, RS can be used for the
identification or typing of maize.

■ RESULTS AND DISCUSSION

We collected more than 600 Raman spectra from six different
varieties of maize (Zea mays). Maize varieties that have been
chosen for our experiment had a distinctly different phenotypic
appearance, Figure 1. Specifically, we have chosen three light
color (small yellow (SY), large yellow (LY), and small white
(SW)) and three dark color (purple (PP), blue (BL), and red
(RD)) maize varieties.

Raman-Based Assessment of Nutrient Content. We
have found that all six varieties of maize had similar spectral
profiles with different intensities of vibrational bands, which
can be assigned to carbohydrates, carotenoids, fibers (lignin),
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and proteins, Figure 2A and Table 1. Interestingly, the spectra
collected from colored maize varieties (BL, PP, RD) exhibited
a much lower intensity of these vibrational bands compared to
the spectra acquired from yellow or pale color (SY, LY, SW)
kernels. One can imagine that dark maize kernels absorb more
and consequently scatter less light compared to the yellow or
pale color kernels. Since RS is based on inelastic light
scattering, dark color maize varieties should produce less
intense spectra (under the same experimental conditions)
compared to the light color maize varieties. Therefore,
observed variations in spectral intensities likely originate

from different light absorption and scattering properties of
these maize kernels.
This observation indicates that raw spectra collected from

colored maize kernels cannot be used for direct assessment of
their nutrient content. For instance, the intensity of the 479
cm−1 band, which can be used to estimate the carbohydrate
content in the maize, appears lower in the spectra collected
from PP maize compared to that in LY or SY maize. However,
this low intensity of this band originates from the poor
scattering properties of PP maize kernels relative to those of
LY or SY maize. This problem can be solved by spectral
normalization. However, normalizing spectra without an
internal standard is a challenging task. Normalization on one
particular band that can be assigned to the specific class of
molecules, such as carbohydrates, may not be appropriate.
Such normalization would bias spectral interpretation in regard
to the nutrient content of that class of molecules. Because the
1458 cm−1 band, assigned to CH2 vibrations, cannot be
associated with any specific class of biomolecule, we have
chosen to normalize our spectra to 1458 cm−1.
This unbiased spectral normalization can be used to access

the nutrient content of maize varieties. The analysis of variance
(ANOVA) of the 479 cm−1 band, which can be assigned to
carbohydrates such as monomeric sugars and starch, revealed
two statistically significant groups of maize (Figure 3). We
found that the SY and RD carbohydrate contents were
significantly different from those of BL and PP. At the same

Figure 1. Photographs of small white (SW), small yellow (SY), extra-
large (XL), blue (BL), purple (PP), and red (RD) maize kernels.

Figure 2. Baseline-corrected (A) and normalized (B) Raman spectra
of BL, SW, SY, PP, RD, and LY maize kernels. The 1458 cm−1 peak,
which was used for spectral normalization, is indicated by an asterisk
(*).

Table 1. Vibrational Bands and Their Assignments for
Maize Kernels

band vibrational mode assignment

1660 CO stretching (amide I) proteins14

1632 CC−C (ring) lignin24

1600 ν(CC)ring + σ(CH) lignin23

1527 −CC− (in-plane) carotene25

1460 δ(CH) + δ(CH2) + δ(C−O−H) CH, CH2,
and COH deformations.

carbohydrates26

1400 δ(C−C−H) carbohydrates26

1381 δ(C−O−H) - coupling of the CCH and
COH deformation modes

carbohydrates26

1340 ν(C−O); δ(C−O−H) carbohydrates26

1261 δ(C−C−H) + δ(O−C−H) + δ(C−O−H) carbohydrates26,27

1153 C−C stretching; ν(COC), ν(CC) in
glycosidic linkage, asymmetric ring
breathing

carotenoids.28

carbohydrates29

1125 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates26

1085 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates26

1052 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates26

1009 phenylalanine ring stretching mode proteins14

939 δ(C−O−C) + δ(C−O−H) + ν(C−O) α-1,4
glycosidic linkages

carbohydrates26

865 δ(C−C−H) + δ(C−O−C) glycosidic bond;
anomeric region

carbohydrates26

768 δ(C−C−O) carbohydrates26

717 δ(C−C−O) related to glycosidic ring skeletal
deformations

carbohydrates26

576 δ(C−C−O) + τ(C−O) carbohydrates26

614 δ(C−C−C) carbohydrates26

521 S−S gauche-gauche-trans protein30

479 CCO and CCC deformations; related to
glycosidic ring skeletal deformations
δ(C−C−C) + τ(C−O) Scissoring of
C−C−C and out-of-plane bending of C−O

carbohydrates26

442 skeletal modes of pyranose ring carbohydrates26
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time, SW and LY were not significantly different from the first
and second groups of maize, respectively.
Carotenoids exhibit bands around 1530 cm−1, which can be

assigned to in-plane −CC− vibrations. ANOVA revealed
three statistically significant groups of maize based on the
intensities of these carotenoid bands. SW and RD had the
lowest carotenoid content and could be assigned to the first
group. The carotenoid content of this group is statistically
different from that of BL. Finally, SY, PP, and LY belong to the
third group with the highest carotenoid content. From Figure
3B, it is apparent that the darkness of a kernel is not correlated
with the intensity of the carotenoid band. Our results support a
previous hypothesis that the color of maize kernels is
determined by anthocyanins.21,22

Fibers are polyphenolic molecular assemblies that have two
distinct vibrational bands in Raman spectra.23,24 The band at
1600 cm−1 can be assigned to C−C ring stretching and
symmetric C−H vibration.23 The 1632 cm−1 band originates
from CC aromatic ring vibration.24 ANOVA revealed at
least two groups of maize based on the fiber content.
Specifically, SY and RD can be assigned to the first group
with the lowest fiber content. PP showed the highest fiber
content that is statistically significant from all other groups.
Based on the intensity of 1600 cm−1 band, the fiber content in
BL, SW, and LY is higher compared to that in SY and RD, but
lower than in PP. However, it is not statistically different from

SY, RD, and PP. At the same time, the analysis of the intensity
of 1632 cm−1 band showed that the fiber content of LY is
significantly different from both first (SY and RD) and second
(PP) groups, whereas BL and SW were not significantly
different from PP.
Proteins exhibit a carbonyl vibration of the peptide bond at

1640−1670 cm−1, known as the amide I band, as well as a
band at 1000 cm−1, which can be assigned to phenylalanine.14

Both of these bands were observed in the Raman spectra
collected from maize kernels. At the same time, the band
around 1650 cm−1 could be attributed to CC bond of
unsaturated fatty acids, whereas 1000 cm−1 could originate
from carotenoid vibrations.25,31 Our results reveal a very
similar pattern for both 1000 and 1660 cm−1 bands indicating
that these bands represent the same chemical structure. Since
the ANOVA pattern of both 1000 and 1660 cm−1 bands is
distinctly different from the ANOVA pattern that was observed
from 1527 cm−1 band, which can be unambiguously assigned
to carotenoids, we can conclude that both 1000 and 1660 cm−1

bands in the Raman spectra of maize can be used to reveal the
protein content. We found that RD maize has the lowest
protein content, whereas BL, SW, SY, and PP have statistically
higher protein content.
These results clearly demonstrate that RS can be used for

fast (1s spectral acquisition), noninvasive, and nondestructive
assessment of carbohydrates, proteins, fibers, and carotenoids

Figure 3. Means (circles) and confidence intervals for the intensities of the maize kernel spectra, normalized to 1458 cm−1, at the indicated Raman
shift. Colors indicate significantly different groups. Multiple colors indicate a member of a group that has overlap between two separate groups.
Each of (A)−(F) corresponds to a different selected Raman shift discussed in the text.
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in the intact grain. When coupled to ANOVA, RS provides a
highly accurate content of these four classes of nutrients. Also,
handheld spectrometer enables the performance of this analysis
directly in the field with only one kernel required for
quantitative elucidation of the grain nutrient content.
The question to ask is how this information can be related to

nutrient content analysis made by already established
techniques. To answer this question, we performed the
analysis of the same grain samples using NIR and determined
protein and carbohydrate contents using the Dumas
combustion method32 and megazyme total starch content
assay (subsequently megazyme assay),33 respectively (Tables 2
and 3).

According to NIR analysis, the amount of starch was found
to vary in the maize varieties from 60.2 to 63.1%. Considering
the fact that the accuracy of such analysis is ±5%,34 NIR
analysis suggests that there is no significant difference in starch
content among the maize varieties. According to the results of
megazyme assay, starch content varies from 54.6 to 59.3%
(±3%).33 These results can also be used to reference Raman
readings to the starch content. Thus, 2.55−2.9 scale in the
Raman can be assigned to 57% of starch by the dry weight.
Although RS reveals two statistically different groups of maize
based on their starch content (Figure 3), the lack of accuracy
expressed by already established methods does not allow us to
prove that RS is more accurate in the prediction of starch
content than NIR and megazyme assay.
Our NIR results indicated that the amount of protein in the

analyzed samples varied from 10.0 to 12.0%. It is expected that
reported values have a precision ranging from 3 to 6%.32

Dumas combustion analysis revealed similar values of protein
content in the analyzed maize kernels (10.4−11.9%). However,
the accuracy of this method ranges between 2 and 4%.32 These
results suggest that 0.05−0.1 scale in Raman corresponds to
11.2% of protein. Thus, the same as in the case of starch, the
lack of accuracy expressed by both NIR and Dumas assays does
not allow us to prove that RS is more accurate in the prediction
of protein content.

Raman-Based Typing of Maize Varieties. We con-
ducted partial least-squares discriminant analysis (PLS-DA)35

to demonstrate that RS can be used for typing of these maize
varieties. The model was built using all 613 spectra with the
mean offset removed at each wavenumber and cross-validated
with the same data partitioned by the venetian blinds
method.36 This model contained 19 latent variables (LVs)
and was used to generate a misclassification table (Table 4).

The first three LVs explain 94.6, 1.7, and 0.7% of the variation,
respectively. The misclassification table reports the true
positive rate (accuracy) of the model; green cells in the table
indicate members of a class that were correctly assigned to
their class during cross-validation. Overall, we can see that the
model performs with an 89% classification accuracy at
minimum.

■ CONCLUSIONS

Our findings indicate that RS in combination with advanced
statistical analysis can be used to predict the nutrient content
of carbohydrates, carotenoids, fibers, and protein in intact
maize kernels. We have also shown that RS is capable of highly
accurate typing of maize grain. Thus, this study shows that RS
is a highly efficient multifunctional method for the analysis of
grain.

■ MATERIALS AND METHODS

Maize. Six different varieties of maize (Zea mays) were
purchased from Amish Country Popcorn (Berne, Indiana) and
used as received.

Raman Spectroscopy. Raman spectra were collected with
a handheld Resolve Agilent spectrometer equipped with an
831 nm laser and a spectral resolution of 15 cm−1. The
following experimental parameters were used for all collected
spectra: 1s acquisition time, 495 mW power, surface scanning
mode, and baseline spectral subtraction by device software.
Spectra shown in the manuscript are baseline-corrected by the
instrument software without smoothing. One spectrum was
collected per one maize kernel.

Spectral Processing. Spectral processing (described
below) and averaging were conducted using PLS_Toolbox
8.6.2 (Eigenvector Research, Inc., Manson, WA).

Statistical Analysis. Raman spectra were imported into
Matlab (Mathworks) and assigned a class based on their visual
phenotype (color). For ANOVA, spectra were normalized to
the 1458 cm−1 band. For PLS-DA, the mean offset was
removed at each wavenumber before analysis.

NIR Analysis. PerkinElmer DA 7250 NIR analyzer was
used to determine the amount of protein, starch, oils, moisture,
and ash in six varieties of maize. For each maize variety, ∼30 g
of material was submitted to the analyzer.

Table 2. Results of NIR Analysis of Nutrient Content of Six
Different Maize Varieties

starch (%) protein (%) moisture (%) oil (%) ash (%)

BL 63.1 10.0 13.4 4.6 0.8
SW 62.7 10.7 13.2 3.4 0.8
SY 63.1 11.9 13.0 4.0 0.9
PP 62.2 11.4 13.5 3.5 0.8
RD 60.2 12.0 14.1 3.7 0.9
LY 62.4 10.6 13.1 3.8 0.9

Table 3. Results of Megazyme Assay for Total Starch and
Dumas Combustion Analysis for Six Different Maize
Varieties

starch (%) protein (%)

BL 58.0 10.4
SW 54.6 11.7
SY 59.3 11.6
PP 56.6 11.3
RD 54.8 11.9
LY 58.4 10.4

Table 4. Misclassification Table of Cross-Validation for the
PLS-DA Model

members correct (%) BL SW SY PP RD LY

BL 113 98 111 0 0 0 2 0
SW 100 98 0 98 2 0 0 0
SY 98 94 0 0 92 1 2 3
PP 100 89 5 2 0 89 1 3
RD 100 99 0 0 1 0 99 0
LY 102 94 0 0 5 1 0 96
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Chemical Content Analysis. Phenolic content was
measured according to the Folin−Ciocalteu method.37 Total
protein concentration was determined by combustion using
LECO instrument and a nitrogen-to-protein conversion factor
of 5.7.37 Total starch content was found using the megazyme
assay kit, based on the RTS-NaOH procedure from the AACC
76.13 and AOAC 999.11 methods (K-TSTA; Megazyme, Bray,
Ireland).
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