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ABSTRACT: Insect damage to crops is a serious issue, in
particular when the pest dwells within its host. The cowpea
bruchid (Callosobruchus maculatus) is an herbivore of legumes
including beans and peas. The bruchid lays its eggs on the
seeds themselves; after hatching, the larvae burrow into and
develop inside the seed, complicating detection and treatment.
Left unchecked, two insects could destroy up to 50% of 1 ton
of harvest cowpea (Vigna unguiculata) after several months of
storage. In this study, we investigated the possibility of using a
hand-held Raman spectrometer to detect the pest during its
development within intact cowpeas. Our results show that
Raman spectroscopy can detect chemical signatures of bruchid larvae as well as their excrements inside the intact seeds.
Additionally, using chemometric methods, we distinguished between healthy and infested seeds as well as among seeds hosting
developmentally early or late-stage larvae with high accuracy. This study demonstrates Raman spectroscopy’s efficacy in not
only detection of pathogens and pests present on the surface of plant leaves and the grain but also inside the seeds. This Raman-
based method may prove useful as a rapid means of screening crops for internal pests.

Meeting the dietary needs of the world is a constant issue.
Based on recent population growth projections, we will

need to produce 70% more food by 2050.1 There are several
strategies to address this challenge: expand agricultural land
areas or develop more advanced agriculture. Despite being
utilized in many developing countries, the first approach is
inefficient, destructive to nature and can offer only a short-term
solution for global food security. The second strategy involves
advanced plant genetics and plant breeding, as well as
development of technologies that would enable timely
detection, identification and treatment of plant pathogens
and pests.2

Raman spectroscopy (RS) is a label-free, noninvasive,
nondestructive spectroscopic technique which can be used to
determine structure and molecular composition of analyzed
specimens. RS efficacy has been shown in food chemistry,3

electrochemistry,4 forensics,5,6 materials science,7 and many
other research areas. For instance, it has been recently
demonstrated that RS can be used to monitor changes in
protein secondary structure,8 conduct forensic analysis of body
fluids,5 and detect gunshot residues.9 Another advantage of RS
is its portability, enabling utilization of RS directly in the
field.10

We have recently demonstrated that a hand-held Raman
spectrometer is able to detect and identify fungi-induced
diseases on maize.11 Specifically, we identified whether maize
kernels were healthy or infected by Aspergillus f lavus, A. niger,

Fusarium spp., or Diplodia spp. with high accuracy. This
approach is based on pathogen-specific changes to host
molecules. We also showed that RS can be used for highly
accurate detection and identification of fungal diseases on
sorghum and wheat grain. It appeared that RS was capable of
diagnosis of simple diseases, such as ergot, that are caused by
one pathogen, as well as complex diseases, such as black tip or
mold, which were induced by several different pathogens.12,13

We also showed that RS can be used to determine states of
disease development on grain. These results potentially suggest
that Raman-based approach for disease detection on plants is
sample agnostic.
It is yet to be determined whether RS can be utilized for

detection of insect pests hidden inside seeds, fruits and
vegetables before visual symptoms develop. In this study, we
investigated the possibility of using RS to detect the presence
of cowpea bruchid (Callosobruchus maculatus) in intact seeds.
This insect infests legumes, including cowpea (Vigna
unguiculata), soybean (Glycine max), and mung bean (Vigna
radiata) not only in the field but also after harvest. Eggs are
laid on the seed surface. Hatched larvae burrow into and
consume the seeds. The larvae develop through four immature
larval stages, before finally pupating and emerging from the
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seeds as adults. The adults, which do not feed upon the seeds
themselves, live for about 10−12 days but are extremely fertile:
a single female can lay approximately 100 eggs. This quick life-
cycle and high reproduction rate explains their destructiveness:
one breeding pair of beetles can destroy half a ton of seeds
within half a year.14

Using a hand-held Raman spectrometer, we collected spectra
from cowpea seeds infested with bruchids at different
developmental stages: first, second, third, fourth instar larvae
(L1−L4) or pupa (17 seeds per stage, 3 spectra per seed
averaged). The respective spectra were averaged and compared
to the average Raman spectrum of healthy cowpea seeds (37
seeds, 3 spectra per seed averaged, Figure 1).
Normalizing spectra without an internal standard is

challenging. In the acquired spectra, we observed peaks
originating from carbohydrates (∼55% seed dry weight),
proteins (22%), and lignin (5%),15 each of which exhibit
several Raman bands (Table 1, discussed below in detail).
Normalization on one particular band out of all observed for
the particular class of molecules, such as carbohydrates, may
not be appropriate if their intensities change. At the same time,
CH2 vibrations (1458 cm

−1) cannot be assigned to any specific
class of compounds since this chemical group is present in
many organic molecules. Therefore, all reported Raman
spectra in the study are normalized on the 1458 cm−1 band.
In the Raman spectra collected from L1−L3 seeds, we

observed a gradual decrease in the intensities of (C−O−H)
vibrational bands (440, 479, 522, 862, 938, 1057, 1085, 1125,
1258, 1339, 1384, 1397 cm−1), whereas drastic changes in
these bands were observed in seeds infested by L4 and pupa
(Figure 1). These vibrational bands can be assigned to
carbohydrates, which include starch and oligo- and mono-
saccharides. We conducted a series of one-way ANOVA values
to evaluate whether observed changes in intensities of select
carbohydrate vibrational bands (440, 1057, 1085, and 1125
cm−1) are statistically significant. ANOVAs follwed by Tukey
HSD tests revealed that in most cases (1057, 1085, and 1125
cm−1), healthy seeds and seeds hosting L1−L3 were
significantly different from those containing L4 or pupa.

Figure 1. Raman spectra of healthy, uninfested cowpea seeds and seeds infested by bruchids at larval and pupal stages, normalized to the 1458 cm−1

peak (indicated by an asterisk (*)). Spectra were acquired with an Agilent Resolve spectrometer with the following parameters: 830 nm excitation,
500 mW power, 1 s acquisition.

Table 1. Vibrational Bands and Their Assignments for
Healthy and Bruchid-Infected Cowpea Seeds at L1−L4 and
Pupa Stages

band vibrational mode assignment

440 skeletal modes of pyranose ring carbohydrates3,24

479 C−C−O and C−C−C deformations;
related to glycosidic ring skeletal
deformations

carbohydrates3

δ(C−C−C) + τ(C−O) scissoring of C−C−
C and out-of-plane bending of C−O

522 δ(C−C−O) + τ(C−O) of carbohydrates or
disulfide bond (S−S) of cysteines

carbohydrates,3

proteins25

579 ν(C−O) + ν(C−C) + δ(C−O−H) cellulose, lignin26

616 δ(C−C−O) of carbohydrates carbohydrates

630 urate; C−S stretching urate,27 cysteine20

718 δ(C−C−O) related to glycosidic ring
skeletal deformations

carbohydrates3

765 δ(C−C−O) carbohydrates3

862 δ(C−C−H) + δ(C−O−C) glycosidic bond;
anomeric region

carbohydrates3

938 skeletal modes; δ(C−O−C) + δ(C−O−H)
+ ν(C−O) α-1,4 glycosidic linkages

carbohydrates28

1005 phenylalanine ring stretching mode proteins17

1057 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates3

1085 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates3

1125 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates3

1208 aromatic ring modes of phenylalanine and
tyrosine

proteins29

1258 δ(C−C−H) + δ(O−C−H) + δ(C−O−H) carbohydrates3,30

1339 ν(C−O); δ(C−O−H) carbohydrates3

1384 δ(C−O−H), coupling of the CCH and
COH deformation modes

carbohydrates3

1397 δ(C−C−H) carbohydrates3

1458 δ(CH) + δ(CH2) + δ(C−O−H) CH, CH2,
and COH deformations.

aliphatic3

1604 ν(C−C) aromatic ring + σ(CH) of
carbohydrates, phenylalanine

lignin,31,32

proteins,29

ergosterol33

1637−1662 CO stretching, amide I proteins25

1721 CO stretching esters21−23
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Such difference was not detected for the band at 440 cm−1

(Table S1). These results suggest that the changes in
carbohydrate intensity can be used to detect late larvae and
pupae in the infested seeds but not for larvae in their earlier
developmental stages. At the same time, the changes between
uninfested/early (healthy, L1−L3) and late (L4 and pupa)
stages are statistically significant.
We also observed a drastic increase in the intensity of the

1604 cm−1 band in the Raman spectra of L4 and pupa,
comparing to the Raman spectra of healthy and L1−L3
cowpea seeds. Additionally, we observed significant changes in
the amide region (1640−1670 cm−1) in spectra collected from
L4 and pupa cowpea seeds. Specifically, a new band at 1637
cm−1 appeared, and the 1662 cm−1 band shifted to 1658 cm−1.
These bands exhibited higher intensities in Raman spectra
collected from pupa-seeds than the spectra of L4 seeds. An
amide I profile with maxima around 1640 and 1658 cm−1 is
typical for proteins with predominantly an α-helical secondary
structure.16 At the same time, amide I at 1662 cm−1 is typical
for large proteins such as globulins and albumin with a mixture
of α-helical, β-sheet, and unordered protein secondary
structures.17,18 We also observed an increase in intensity of
the band at 630 cm−1. This band can be assigned to skeletal
ring deformation of uric acid,19 as well as C−S stretching of
cysteine in proteins or small sulfur containing molecules.20

Finally, we observed a peak at 1721 cm−1 in the Raman spectra
of cowpea seeds with L4 and pupa bruchids, which could be
assigned to esters.21−23

To determine whether these spectral changes reflect insect-
feeding on seeds or originate from the bruchid larvae, we cut
open the L4 seeds to remove the larvae and their excrements
and collected Raman spectra from the L4 seeds with no larvae
present (hereafter L4′), bruchid larvae, and their excrements
(Figure 2).
We found that observed spectral changes in the 1600−1725

cm−1 spectral region were due to the larvae, as their Raman

spectrum exhibits intense bands at 1604, 1637, 1658, and 1721
cm−1. These findings suggest that RS can be used to monitor
the growth of intact larvae. We also found that the vibrational
band at ∼630 cm−1, which was observed in Raman spectra
collected from L4 and pupa, could be assigned to uric acid, the
major component of insect excrements. Finally, we observed a
decrease in the intensity of nearly all vibrational bands that are
associated with carboydrates in the L4′ spectrum. Additional
mass spectrometric identification of compounds synthesized in
seeds in response to a pathogen is required to fully elucidate
those spectral changes. Currently, this work is in progress in
our laboratory.
Next, we used partial least-squares discriminant analysis34

(PLS-DA) to determine whether RS can be used for detection
of bruchid inside cowpea seeds. Spectra were imported into
MATLAB R2017b following baselining by the portable
instrument software and then mean centered. Two models
were built using PLS_Toolbox 8.6.2, the first model (early late,
EL), using 122 spectra partitioned 80:20 into calibration and
validation sets by the Kennard-Stone method, determined
whether the seed contained no/early (H, L1−L3) or late (L4
or pupa) stage larvae; the second (healthy-early, HE), 88
spectra partitioned 80:20, separates healthy uninfested seeds
from those infested by early stage larvae (L1−L3). These two
models were used to generate the loadings spectra (Figures S1
and S2) and misclassification tables (Tables 2 and 3).

Figure 2. Raman spectra of healthy cowpea, L4 and L4′ (A), normalized to the 1458 cm−1 peak (indicated by an asterisk (*)). Raman spectra of
bruchid larvae (B) and their excrements (C) are offset for clarity.

Table 2. Accuracy of Validation by PLS-DA with the EL
Model

members correct
early
stage

late
stage

early stage 16 93.7% 15 0
late stage 8 100% 1 8
Matthew’s correlation coefficient 0.913
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The final EL model, containing 8 latent variables (LVs), was
used to generate a misclassification table (Table 2) and a
loadings plot (Figure S1). The misclassification tables
communicate the true positive rate (“correct”) and the
Matthew correlation coefficient (MCC), a descriptor of the
model’s ability as a binary classifier. An MCC close to positive
one indicates a better classifier. The first three LVs, plotted in
Figure S1, explain 83.32%, 5.62%, and 4.43% of the variation
between the two classes, respectively. From the loadings plot,
the model identified many of the peaks discussed previously as
being important predictors of class membership, including
those of lignin and/or protein (LV 2 and LV 3) in the 1600
cm−1 region, cysteine and/or uric acid at 630 cm−1, and the
carbohydrate region from about 1000−1100 cm−1. Unsurpris-
ingly, these correspond to the insect associated peaks observed
in Figure 2.
The final HE model, which contained 9 LVs, was used to

generate a second misclassification table (Table 3) and
loadings plot (Figure S2). The first three LVs of this model
explain 60%, 27%, and 6% of the total variation between the
healthy and early stage classes. Interestingly, some important
peaks for discriminating between healthy and early stages differ
from those for early and late stages. For example, while the
1600 cm−1 and 630 cm−1 regions are important in the EL
model, they do not appear to be as important for HE. This is
reasonable, as those peaks are closely associated with the
bruchid itself. The carbohydrate associated peaks in the 1000−
1100 cm−1 region retained their importance for both models.
Together, these models can discriminate between healthy/
uninfested seeds and seeds at early or late stages of infestations
with high accuracy.
Our results clearly demonstrate that RS can detect insect

pests within plant hosts, such as cowpeas. We showed that
observed spectral changes originate from larvae and their
excrement. We demonstrated that the combination of
chemometric analysis and RS enables us to distinguish between
uninfested and infested seeds with high accuracy. Such
detection approach is confirmatory, noninvasive, nondestruc-
tive and can be performed with a hand-held Raman
spectrometer, which makes it a highly desirable pest
monitoring tool during storage and transportation of
agricultural products. This is extremely important to prevent
widespread pest propagation and reduce crop damage by
herbivores.
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