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ABSTRACT: Global population growth drives increasing food
demand, which is anticipated to increase by at least 20% over the
next 15 years. Rapid detection and identification of plant
pathogens allows for up to a 50% increase in the total agricultural
yield worldwide. Current molecular methods for pathogen
diagnostics, such as polymerase chain reaction (PCR), are costly,
time-consuming, and destructive. These limitations recently
catalyzed a push toward developing minimally invasive and
substrate general techniques that can be used in the field for
confirmatory detection and identification of plant pathogens.
Raman spectroscopy (RS) is a noninvasive, nondestructive, and label-free technique that can be used to determine chemical
structure of analyzed specimens. In this study, we demonstrate that by using a hand-held Raman spectrometer, we can identify
whether wheat or sorghum grains are healthy or not and identify present plant pathogens. We show that RS enables diagnosis of
simple diseases, such as ergot, that are caused by one pathogen, as well as complex diseases, such as black tip or mold, which are
induced by several different pathogens. The combination of chemometric analysis and RS allows for distinguishing between
healthy and infected grains with high accuracy. We also show that RS can be used to determine states of disease development on
grain. These results demonstrate that Raman-based approach for disease detection on plants is sample agnostic.

Global population growth places increasing pressure on
food production. Relieving this pressure can be achieved

by methods such as via deforestation and expansion of
agricultural lands or timely treatment of crop diseases, which
cause 20−40% loss of total agricultural yield worldwide.1

Current technologies for identification of plant pathogens
include indirect and direct methods.2 Indirect approaches
detect plant responses to pathogens, such as change of color or
temperature, and include thermography,3 hyperspectral
imagery,4 and visible, infrared or fluorescence spectroscopy.2

By attaching the relevant instrumentation to an unmanned
aerial vehicle (UAV), large tracts of land can be quickly
surveyed. However, these methods cannot identify specific
pathogens.
Direct methods for detection and identification of plant

pathogens include flow cytometry, gas and liquid chromatog-
raphy coupled with mass-spectrometry (GC- and LC-MS),5

enzyme-linked immunosorbent assay (ELISA),6 immunofluor-
escence,7 fluorescence in situ hybridization (FISH),8 and
polymerase chain reaction (PCR).9,10 These exhibit high
pathogen specificity; however, they have their own limitations.
Specifically, PCR is highly sensitive to contamination from
environmental DNA, can be inhibited by small quantities of
organic solvents and requires initial design of primers based on
known DNA sequences. It has limited portability and is
e s s en t i a l l y de s t ruc t i ve to the ana l y zed spec i -
mens.2,9 The chemical dyes used in immunofluorescence,

FISH and ELISA are highly sensitive to photobleaching.
Additionally, these techniques typically cannot detect all
pathogens.2 Flow cytometry requires analyzed material be in
suspension and often generates excessive amount of data,
making sample analysis complicated.7,11 GC- and LC-MS are
costly, destructive, and have limited portability.5,12 Lack of
noninvasive, nondestructive, confirmatory technology to detect
plant infection is what sparked and challenged us to investigate
the capacity of Raman spectroscopy to solve this problem.
Raman spectroscopy (RS) is a modern analytical technique

that provides information about molecular vibrations and
consequently the structure of the analyzed specimen. The
Raman effect is based on inelastic scattering of photons by
molecules that are being excited to higher vibrational or
rotational states. RS has been broadly used in various research
fields ranging from forensic analysis of bodily fluids13−15 and
pesticides16 to food science17 and electrochemistry.18 Recently,
several companies19,20 produced hand-held Raman spectrom-
eters. This enables utilization of RS directly in the field for
applications, such as forensics21,22 and mineralogy.23,24

Our group recently demonstrated that, using a hand-held
Raman system, we were able to detect and identify plant
diseases on maize.25 Specifically, we were able to identify
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whether maize kernels were healthy of infected by Aspergillus
f lavus, A. niger, Fusarium spp., or Diplodia spp. with 100%
accuracy. We chose to further our studies using a hand-held
Raman system on wheat and sorghum seeds because these
crops are the most economically important food sources grown
worldwide.26,27

In this study, we investigated wheat and sorghum grains
infected with ergot, black tip, or mold. These pathogens cause
devastating losses (up to 50% of crop yield) in both wheat28

and sorghum.29 Ergot infection is caused by Clavicepus sp.30

that forms sclerotia on the surface of infected grain. Ergot
sclerotia produce highly toxic alkaloids which cause severe
muscle spasms, fever, hallucinations, mania, paralysis, tremors,
distorted perceptions, and even reduce human fertility and
cause spontaneous abortions.31 Therefore, sclerotia content
must be controlled. For instance, in the United States, wheat
cannot contain more than 0.05% sclerotia by weight.32 Black
tip disease is associated with Alternaria spp., Cochliobolus spp.,
and Cladosporium spp.33,34 It is characterized by a blackening of
the embryo of wheat kernels and occurs in wet, humid
environments. This disease reduces weight of grains, economic
worth, and in some cases decreases seed germination.34

Furthermore, if a grain infected with Cochliobolus sativus is
planted, it can lead to seedling blights. Losses of sorghum grain
to mold infection are estimated to vary from 30% to 100% and
cost Asia and Africa 130 million US dollars.35 As in black tip,
economic losses are due to decreased seed mass, density, and
germination chance. Grain mold infection is caused by a
variety of different fungal species including Fusarium andiyazi,
F. proliferatum, F. sacchari, F. verticillioides, and F. thapsinum,35

which colonize developing grain in wet or humid conditions.36

Because of the number of contributing pathogens, accurate and
early identification of individual causative agents is not always
possible using conventional methods, such as PCR, which
targets specific nucleotide sections of each pathogen.
In this study, we examined simple and complex diseases.

Simple diseases, such as ergot, are caused by a single pathogen,
whereas complex diseases, including black tip and mold, are
caused by multiple pathogens. We demonstrated that by using
a portable Raman spectrometer we not only could detect and
identify simple-case pathogen disease but also diagnosed
complex plant diseases such as black tip and mold. Moreover,
such examination is label-free, noninvasive, and nondestructive
to the analyzed grain.

■ EXPERIMENTAL SECTION
Materials. Healthy and disease-infected wheat and

sorghum grain was provided by laboratories of Prof. Isakeit
from the Department of Plant Pathology and Microbiology
and Prof. Ibrahim from the Department of Soil and Crop
Sciences, Texas A&M University. Plant diseases, as well as
stages of their progression on grain, were confirmed and
determined by samples’ examination performed by the expert
in plant pathology Prof. Isakeit based on disease discrete
phenotypic appearance.
Spectroscopy. Raman spectra were collected with a hand-

held portable Rigaku Progeny ResQ spectrometer (Rigaku
Analytical Devices, Inc. Wilmington, MA), equipped with a
1064 nm Nd:YAG laser. The following experimental
parameters were used for all collected Raman spectra: 1064
nm excitation wavelength, 80 s acquisition time, 200 mW
power, and baseline spectral subtraction by device software.
Spectra were taken from the middle of the side of each grain.

The number of spectra that comprise each averaged spectra are
as follows: Healthy sorghum has 8 spectra averaged, sorghum
ergot has 7, sorghum early mold infection has 11, sorghum
middle mold infection has 9, sorghum late mold infection has
9, healthy wheat has 7, wheat black tip has 9, and wheat ergot
has 8. Spectra were taken from different grains, screened for
outliers, and averaged. Spectra shown in the manuscript are
raw baseline corrected, without smoothing.

Multivariate Data Analysis. SIMCA 14 (Umetrics, Umea,̊
Sweden) was used for statistical analysis of the collected
Raman spectra. To give all spectral regions equal importance,
spectra were scaled to unit variance. Partial least-squares
discriminant analysis (PLS-DA) was performed in order to
determine the number of significant components and identify
spectral regions that best explain the separation between the
classes. The analysis was performed in two iterations. In the
first iteration, the PLS-DA model was built using all
wavenumbers in the recorded spectra. In the second iteration,
wavenumbers with a variable importance (VIP) score of less
than 1.0 were excluded to reduce noise and improve the
predictive power of the model.

Spectral Processing. Processing and averaging were done
with GRAMS/AI 7.0 software (Thermo Galactic, Salem, NH).

■ RESULTS AND DISCUSSION
Detection and Identification of Ergot and Black Tip

Infection on Wheat. Raman spectrum of healthy wheat
exhibits vibrational bands originating from proteins, pectin,
lignin, carbohydrates, and carotenoids (Figure 1A and Table
1).
Raman spectra of ergot- and black tip-infected wheat are

very similar to the spectrum of healthy wheat. Nevertheless, we
observed significant differences in intensities and frequencies
of some vibrational bands associated with proteins, pectin and
carotenoids. Raman spectra of proteins typically exhibit several
amide vibrations, known as amide I (1640−1670 cm−1,),
amide II (∼1555 cm−1), and amide III (1230−1270 cm−1).37

The amide I position is sensitive to the secondary structure of
the protein molecule. Specifically, an α-helix exhibits the amide
I band around 1650 cm−1, whereas the amide I of a β-sheet is
typically around 1670 cm−1. In the spectra of ergot-infected
wheat, we observed two distinct peaks in the amide I region
centered around 1650 and 1667 cm−1 that were not evident in
the spectra of healthy wheat and black tip (Figure 1B). This
observation indicates that ergot infection in the wheat may be
associated with expression and deposition of α-helical and β-
sheet proteins.
Interestingly, we did not observe significant changes in

intensities of vibrational bands associated with lignin and
carbohydrates apart from pectin (Table 1) in ergot-infected
wheat. This indicates that ergot infection is not associated with
significant changes in the structures of these biopolymers upon
their growth and development on grains. At the same time, we
observed small changes in the vibrational bands of carbohy-
drates in the spectrum of black tip-infected wheat. Specifically,
in the spectra of black tip-infected wheat, the intensity of
the vibrational band at 862 and 937 cm−1 decreased, whereas
the intensities of the vibrational bands at 1348 and 1600 cm−1

increased compared to the spectrum of healthy wheat (Figure
1A). Vibrational bands at 862 and 937 cm−1 are associated
with C−O−C vibration, which is typical for starch, whereas the
band at 1348 cm−1 corresponds to C−O−H vibration38 that is
characteristic for monomeric sugars. Thus, based on the
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observed spectral changes, we propose that pathogens
associated with black tip may cause fermentation of starch to
monomeric sugars. A decrease in the intensity of 1600 cm−1

band, originating from lignin, in the spectrum of black tip-
infected wheat in suggests that pathogens that are associated
with this disease induce degradation of lignin in sorghum
seeds.
Raman spectra of healthy wheat and ergot exhibit a peak

centered at 862 cm−1. However, this peak is shifted to 856
cm−1 in the Raman spectrum of black tip-infected wheat
(Figure 1C). This vibrational band can be assigned to the C−
O−C skeletal mode of alpha glycosylic bonds in pectin
compounds, which are a class of carbohydrates.40 Pectin is
synthesized methylesterified and is demethylesterified by
endogenous enzymes during development.50 In many plants,
including potatoes,51 beans,52 and tomatoes,53 increased
methylesterified pectin is correlated with an increased ability
to resist infections.50 Therefore, the position of this vibrational
band can be used to evaluate the degree of pectin
methylesterification in grain. The observed shift in a frequency
of this peak to 856 cm−1 suggests an increase in methyl
esterification of pectin in the black tip infected wheat grain
relative to healthy, and ergot infected wheat.40

Vibrational bands around 1530 cm−1 can be assigned to
−CC− in-plane vibrations of carotenoids (Figure 1B).41

The longer are polyene chains of these molecules the more

blue-shifted this band appears in their Raman spectra. Shorter
chains of polyenes, in contrast, exhibit red-shifted −CC−
vibrations. In the spectra of healthy wheat, we observe a single
vibrational band of carotenoids centered at 1541 cm−1. In the
spectrum of ergot-infected wheat, this band is red-shifted to
1551 cm−1. This suggests that growth and proliferation of this
pathogen on wheat is associated with degradation and
fragmentation of host carotenoids. Similar changes in
carotenoid profile were observed by Baranski et al. for red
tomatoes as a response to injury-induced stress.54 We also
observed a vibrational band at 1528 cm−1, which was not
evident in the healthy grain, indicating the appearance of a new
type of polyenes in the ergot-infected wheat. Similar spectral
changes have been observed for black tip-infected wheat. We
observed a new carotenoid band at 1518 cm−1, which is
characteristic for this disease, whereas no change in frequency
of 1541 cm−1 band was detected. These results indicate that
vibrational fingerprint of carotenoids can be used to detect and
identify ergot and black tip diseases on wheat.
We used multivariate data analysis to determine whether RS

can be used for an accurate detection and identification of
plant pathogens. Using PLS-DA, we developed a model that
contained 5 components; 302 out of 512 original wave-

Figure 1. Raman spectra of healthy wheat grains (green), wheat grains
infected by ergot (red), and black tip (black). Because of a lack of an
internal standard, which can be used for spectral normalization, the
reported spectra normalized on 478 cm−1 peak height for better
visualization. Spectra in panels B and C are normalized on the
1600 cm−1and 937 cm−1, respectfully (indicated by asterisks).

Table 1. Vibrational Bands and Their Assignments for
Healthy and Diseased Wheat and Sorghum Grain

band vibrational mode assignment

478 C−C−O and C−C−C deformations;
related to glycosidic ring skeletal
deformations

carbohydrates38,43

δ(C−C−C) + τ(C−O) scissoring of
C−C−C and out-of-plane bending
of C−O

573 δ(C−C−O) + τ(C−O) carbohydrates38,43

646 ring deformations lignin39

706 δ(C−C−O) related to glycosidic ring
skeletal deformations

carbohydrates38,43

758 δ(C−C−O) carbohydrates38,43

856−862 (C−O−C) skeletal mode of α-
anomers

carbohydrates40

937−940 skeletal modes; δ(C−O−C) + δ(C−
O−H) + v(C−O) α-1,4 glycosidic
linkages

carbohydrates38,43

996−1000 ν3(C−CH3 stretching) and
phenylalanine

carotenoids41 and
proteins42

1046 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates38,43

1083 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates38,43

1115 νsym(C−O−C), C−O−H bending cellulose43,44

1124 ν(C−O) + ν(C−C) + δ(C−O−H) carbohydrates45

1140−1150 ν(C−O−C), ν(C−C) in glycosidic
linkage, asymmetric ring breathing

carbohydrates,38,43

cellulose46

1242 C−N stretching + N−H bending,
amide III

proteins42

1259 δ(C−C−H) + δ(O−C−H) + δ(C−
O−H)

carbohydrates38,43

1336 ν(C−O); δ(C−O−H) carbohydrates38,43

1348 δ(C−O−H) carbohydrates38,43

1377 δ(C−O−H) carbohydrates38,43

1400 δ(C−C−H) carbohydrates38,43

1460 δ(CH) + δ(CH2) + δ(C−O−H) CH,
CH2, and COH deformations.

carbohydrates38,43

1518−1551 −CC− (in plane) carotenoids41,42

1600 ν(C−C) aromatic ring + σ(CH) lignin47,48

1630 CC−C (ring) lignin47−49

1650 CO stretching, amide I α-helix proteins42

1667 CO stretching, amide I β-sheet proteins42
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numbers were used to generate the misclassification table
(Table 2).

The first three predictive components (PC) explain 8%,
30%, and 27% of the variation between classes respectively,
which collectively accounts for 65% of the total class-to-class
variation. The model explained 83% of the variation (R2X) in
the spectra and 94% (R2Y) of the variation between the
classes. Furthermore, the model correctly assigned all 24
spectra to their classes. This indicates that coupling of PLS-DA
with RS allows for a high accuracy detection and identification
of these two wheat pathogens.
Detection and Identification of Ergot and Mold

Infection on Sorghum. In the Raman spectra of healthy
sorghum grain we observed vibrational bands originating from
lignin, carbohydrates, proteins, and carotenoids (Figure 2 and

Table 1). Lignin shows two vibrational peaks centered at 1600
and 1630 cm−1. The 1600 cm−1 peak can be assigned to C−C
ring stretching and symmetric C−H vibration.47 The 1630
cm−1 band originates from CC aromatic ring vibration.49

We found that these bands nearly disappear in the spectrum of
mold-infected sorghum. This indicates significant degradation
of lignin, associated with mold development in sorghum grain.
We have also observed a decrease in the intensity of lignin

peaks in the Raman spectra of ergot-infected sorghum. These
findings suggest that these parasites are associated with
structural modifications of grain lignin during growth and
proliferation in the plant.
Carbohydrates, including monomeric sugars and starch, are

the source of many vibrational bands in the spectra.45

Vibrational bands at 1150 and 940 cm−1 can be assigned to
C−O−C vibration, which is typical for starch. Raman bands at
1124 and 1083 cm−1 originate from C−O−H vibrations
(Figure 2). Hydrolysis of starch produces monomeric sugars,
which will be represented in Raman spectra as the increase in
intensities of C−O−H vibrations. We find such an increase in
C−O−C and C−O−H vibrations in the spectra of ergot
(Figure 2). This indicates that pathogenic activity of these
fungi in sorghum seeds is associated with fermentation of
starch to monomeric sugars. At the same time, we observed
that mold-related fungi caused almost the opposite changes to
the equilibrium between monomeric sugars and starch. This
observation suggests that mold-related pathogens are associ-
ated with the conversion of sorghum monomeric sugars into
their polymeric hydrocarbons.
Another component of the Raman spectra of sorghum grain

is pectin, which exhibits a vibrational band at 856 cm−1.40 We
observed a red shift of this band to 862 cm−1 in spectra of both
mold and the ergot infected sorghum (Figure 2). This suggests
a decrease in methylesterification of pectin in this disease
infected grain.45,55 Methylesterification of pectin correlates an
ability of plants to resist infection.49−52 Consequently, a
decrease in the methylesterificated pectin in both the mold and
the ergot infected sorghum suggests a decreased ability of this
grain to resist infection.
We have also observed that the ratios between the 1518 and

1541 cm−1 peaks change from healthy to infected sorghum
grain. In the Raman spectrum of healthy grain, the 1541 cm−1

peak has a greater intensity. However, in both mold- and ergot-
infected grains, the 1518 cm−1 peak increased in intensity while
the 1541 cm−1 peak decreased. This indicates a decrease in the
length of conjugated double bonds of carotenoids.54

Using PLS-DA, we developed a model for an accurate
prediction of mold and ergot disease on sorghum. The model
contained 2 predictive components; 335 out of 512 original
wavenumbers were used to generate the misclassification table
(Table 3).
The two PC explain 48% and 19% of the variation between

classes respectively, which collectively accounts for 67% of the
total class-to-class variation. The model identified lignin and
carbohydrates as the strongest predictors of the sorghum
pathogens, which supports the conclusions of our qualitative
spectral analysis above. The model explained 92% of the
variation (R2X) in the spectra and 67% (R2Y) of the variation
between the classes. Furthermore, the model correctly assigned
54 out of 56 spectra to their classes. This indicates that
coupling of PLS-DA with RS allows for an over 95% accurate
detection and identification of these two wheat pathogens.

Middle-Stage Diagnostics of Grain Mold on Sor-
ghum. To test whether the proposed Raman spectroscopy-
based detection and identification of plant infections can be
used for middle stage disease diagnostics, we analyzed mold-
infected sorghum seeds at different stages of disease
progression. Specifically, we analyzed healthy, middle stage
and late stage infected sorghum grain (Figure 3). We observed
consecutive changes in intensities and frequencies of lignin,
carotenoids and carbohydrates vibrational bands in healthy,

Table 2. Accuracy of Classification by PLS-DA for Healthy
or Each Class of Diseased Wheat

members
correct
(%)

black
tip ergot healthy

no class
(YPred ≤

0)

Black tip 11 100 11 0 0 0
ergot 7 100 0 7 0 0
healthy 6 100 0 0 6 0
no class 0 0 0 0 0
total 25 100 11 7 6 0
Fisher’s
prob.

2.3 × 10−10

Figure 2. Raman spectra of healthy sorghum grains (green) and
grains infected with mold (blue) or ergot (red). The reported spectra
are normalized on 478 cm−1 peak height for better visualization. Insert
spectra are normalized on the 940 cm−1 peak, indicated with an
asterisk.
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middle, and late stage progression of mold on sorghum seeds.
Specifically, we observed a gradual decrease in the intensity of
lignin bands at 1600 and 1630 cm−1 in the spectra of middle
and late stage progression of mold, indicating degradation of
sorghum lignin. Similar changes were observed in vibrational
bands of carbohydrates. We observed a decrease in the
intensity of vibrational bands at 1460 cm−1, whereas the
intensities of vibrational bands at 1400 and 938 cm−1

increased. A shift from 856 to 862 cm−1 was observed for
the progression of mold infection. These spectral changes
point out on transformations in structure and composition of
starch in the sorghum seeds that are associated with the
progression of mold infection. Finally, we observed a decrease
in the intensity of 1541 cm−1 band and an increase in intensity
of 1518 cm−1 that are associated with carotenoids in the
spectra of healthy, middle, and late stage progression of mold
on sorghum grain.
We also were able to probe earlier stages of mold

progression on sorghum seeds (Figure S1). These stages
were categorized 1−3 (the spectrum of stage 3 is shown in
Figure 3, as middle progression stage). In the spectra collected
for stages 2 and 3, we observed the same trend of changes in
bands’ intensities, as were described above for middle and late

stage mold progression (Figure 3). However, intensities of
lignin and carbohydrates for stage 1 progression are
significantly lower compared to stage 2 and 3. This peak
observation does not follow the mold stage trend and it is
presently unclear why. Further studies are currently being
conducted to determine the relationship of the mold
progression in stage 1 for lignin and carbohydrate peaks.

■ CONCLUSIONS
We have demonstrated that RS can be used for label-free,
noninvasive, and nondestructive detection and identification of
plant pathogens directly on intact wheat and sorghum grain.
This approach allows for accurate diagnostics of simple
diseases, such as ergot, which are induced by one pathogen.
Moreover, using portable Raman spectrometer, we can
correctly diagnose complex plant diseases such as mold and
black tip. We also showed that different stages of mold
infection could be distinguished. By coupling multivariate
component analysis and RS, we demonstrate high accuracy in
the disease detection and identification.
The portable nature of our analysis allows for utilization of

RS-based detection and identification of plant pathogens on
autonomous platforms, such as a robot or UAV. Constant
monitoring of crops would allow for rapid detection of (and
response to) disease outbreak, potentially saving billions of
dollars by limiting crop damage.

■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.8b01863.

Different stages of progression of mold infection of
sorghum grains (PDF)

■ AUTHOR INFORMATION
Corresponding Author
*E-mail: dkurouski@tamu.edu.
ORCID
Dmitry Kurouski: 0000-0002-6040-4213
Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We are grateful to AgriLife Research of Texas A&M for the
provided financial support. We also acknowledge Governor’s
University Research Initiative (GURI) grant program of Texas
A&M University, GURI Grant Agreement No. 12-2016. We
are grateful to Dr. Thomas Isakeit from the Department of
Plant Pathology and Microbiology, Texas A&M University and
Dr. Amir Ibrahim from the Department of Soil and Crop
Sciences, Texas A&M University for the provided wheat and

Table 3. Accuracy of Classification by PLS-DA for Healthy or Each Class of Diseased Sorghum

members correct (%) mold ergot healthy no class (YPred ≤ 0)

mold 41 100 41 0 0 0
ergot 7 71.43 1 5 1 0
healthy 8 100 0 0 8 0
no class 0 0 0 0 0
total 56 96.43 42 5 9 0
Fisher’s prob. 3.6 × 10−15

Figure 3. Different stages of progression of mold infection of sorghum
grains. Raman spectra of healthy sorghum grain (green), middle
progression (gray), and late stage (blue) of mold infection. Infected
sorghum panicles were visually inspected and assigned to a stage of
mold progression based on their appearance. The reported spectra are
normalized by 478 cm−1 peak height for better visualization. Insert
spectra are normalized on the 938 cm−1 peak, indicated with an
asterisk.

Analytical Chemistry Article

DOI: 10.1021/acs.analchem.8b01863
Anal. Chem. XXXX, XXX, XXX−XXX

E

http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.8b01863/suppl_file/ac8b01863_si_001.pdf
http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.8b01863
http://pubs.acs.org/doi/abs/10.1021/acs.analchem.8b01863
http://pubs.acs.org/doi/suppl/10.1021/acs.analchem.8b01863/suppl_file/ac8b01863_si_001.pdf
mailto:dkurouski@tamu.edu
http://orcid.org/0000-0002-6040-4213
http://dx.doi.org/10.1021/acs.analchem.8b01863


sorghum samples. We are also grateful to Charles Farber for
the helpful discussion and assistance with graphical design.

■ REFERENCES
(1) Savary, S.; Ficke, A.; Aubertot, J. N.; Hollier, C. Food Secur.
2012, 4, 519−537.
(2) Sankaran, S.; Mishra, A.; Ehsani, R.; Davis, C. Comput. Electron.
Agric. 2010, 72, 1−13.
(3) Raza, S. E. A.; Prince, G.; Clarkson, J. P.; Rajpoot, N. M. PLoS
One 2015, 10, e0123262.
(4) Moshou, D.; Bravo, C.; West, J.; Wahlen, S.; McCartney, A.;
Ramon, H. Comput. Electron. Agric. 2004, 44, 173−188.
(5) Moalemiyan, M.; Department, P. S.; Vikram, A.; Department, P.
S.; Kushalappa, A. C.; Department, P. S.; Yaylayan, V. Plant Pathol.
2006, 55, 792−802.
(6) Alvarez, A. M.; Lou, K. Plant Dis. 1985, 69, 1082−1086.
(7) Chitarra, L. G.; van den Bulk, R. W. Eur. J. Plant Pathol. 2003,
109, 407−417.
(8) Wullings, B. A.; Beuningen, A. R. V.; Janse, J. D.; Akkermans, A.
D. L. Appl. Environ. Microbiol. 1998, 64, 4546−4554.
(9) Lievens, B.; Brouwer, M.; Vanachter, A. C. R. C.; Cammue, B. P.
A.; Thomma, B. P. H. J. Plant Sci. 2006, 171, 155−165.
(10) Li, W.; Hartung, J. S.; Levy, L. J. Microbiol. Methods 2006, 66,
104−115.
(11) Wallner, G.; Amann, R.; Beisker, W. Cytometry 1993, 14, 136−
143.
(12) Padliya, N. D.; Garrett, W. M.; Campbell, K. B.; Tabb, D. L.;
Cooper, B. Proteomics 2007, 7, 3932−3942.
(13) Virkler, K.; Lednev, I. K. Forensic Sci. Int. 2008, 181, e1−e5.
(14) Virkler, K.; Lednev, I. K. Analyst 2010, 135, 512−517.
(15) Virkler, K.; Lednev, I. K. Anal. Chem. 2009, 81, 7773−7777.
(16) Liu, B. H.; Han, G. M.; Zhang, Z. P.; Liu, R. Y.; Jiang, C. L.;
Wang, S. H.; Han, M. Y. Anal. Chem. 2012, 84, 255−261.
(17) Schmidt, H.; Sowoidnich, K.; Kronfeldt, H.-D. Appl. Spectrosc.
2010, 64, 888−894.
(18) Zeng, Z. C.; Hu, S.; Huang, S. C.; Zhang, Y. J.; Zhao, W. X.; Li,
J. F.; Jiang, C.; Ren, B. Anal. Chem. 2016, 88, 9381−9385.
(19) Zhou, X. J.; Jiang, D.; Xu, J.; Xu, Y.; Wang, S. X. Handheld
Raman spectrometer. U.S. Patent USD748510S1, 2016.
(20) Rigaku Corporation. Advanced handheld Raman Spectrometer,
2018. https://www.rigaku.com/en/progeny.
(21) Kurouski, D.; Van Duyne, R. P. Anal. Chem. 2015, 87, 2901−
2906.
(22) Hager, E.; Farber, C.; Kurouski, D. Forensic Chem. 2018, 9, 44−
49.
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