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ABSTRACT: Rapid detection and identification of crop pathogens is essential for Raman Hoalthy el Diplodta
improving crop yield. Typical pathogen assaying methods, such as polymerase chain Spectroscopy .
reaction (PCR) or enzyme-linked immunosorbent assay (ELISA), are time-consuming ¢ el o

and destructive to the sample. Raman spectroscopy (RS) is a noninvasive nondestructive
analytical technique that provides insight on the chemical structure of the specimen. In
this study, we demonstrate that using a hand-held Raman spectrometer, in combination

Fusarium! |

with chemometric analyses, we can distinguish between healthy and diseased maize (Zea mays) kernels, as well as between
different diseases with 100% accuracy. Our analysis is portable and sample-agnostic, suggesting that it could be retooled for other

crops and conducted autonomously.

he continuous growth of the human population makes
global food security one of the most important aspects of
maintaining our civilization. Currently, over a billion people
suffer from different kinds of malnutrition due to a lack of
sufficient food. There are several strategies to address this issue,
one of which is increasing agricultural land areas. Not only is
this approach highly destructive to nature, but it is also highly
inefficient, as we will need 70% more food by 2050." The
second strategy addresses disease-induced damage to crops
during growth, harvest, and postharvest processing. Plant
diseases make a tremendous impact on crop productivity,
causing up to 50% of crop loss.” Timely disease diagnosis will
reduce costs of pathogen treatment and increase crop yield.
Over the past decade, several imaging and molecular
techniques have been developed for disease diagnostics.””>
Plant imaging techniques, such as hyperspectral imaging and
thermography, are based on detecting changes in the
electromagnetic spectrum or in the surface temperature of
the plant that are caused by pathogens.’ These techniques can
be conducted remotely with airplanes or unmanned aerial
vehicles (UAVs) and therefore are used for monitoring large
fields. However, neither hyperspectral imaging nor thermog-
raphy have disease specificity. At the same time, both are highly
sensitive to changes in environmental conditions during
measurement, which significantly reduces their accuracy.
Molecular techniques, in contrast, exhibit high pathogen
specificity. However, all currently available molecular methods
for plant pathogen diagnostics have their own limitations.
Specifically, polymerase chain reaction (PCR) is highly sensitive
to the quality of reagents, requires initial design of DNA
primers for amplification and has limited portability.”
Immunofluorescence, fluorescent in situ hybridization (FISH)
and enzyme-linked immunosorbent assay (ELISA) suffer from
photobleaching and are not sensitive to all pathogens.”” Their
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practical utilization in the field for pathogen analysis is time-
consuming and usually very challenging. Flow cytometry
provides a wealth of information, but much of this information
is not relevant for disease detection.® Gas and liquid
chromatography (GC and LC) alone or in combination with
mass spectrometry (GC- and LC-MS) is very complex, requires
time-consuming sample preparation, and has limited port-
ability." These limitations recently catalyzed a push toward
developing minimally invasive and substrate general techniques
that can be used in the field for confirmatory detection and
identification of plant pathogens.

Raman spectroscopy (RS) is a label-free, noninvasive, and
nondestructive spectroscopic technique that provides informa-
tion about the chemical structure of analyzed s&)ecimens. Its
practical applications span from food chemistry'® and electro-
chemistry' ' to forensics'>'® and materials science.'* For
instance, it has been recently demonstrated that RS can be
used to monitor changes in protein secondary structure,'’
conduct forensic analysis of body fluids'” and detect gun-shot
residues.'® Over the past decade, several companies have
developed portable Raman spectrometers, which has enabled
utilization of RS directly in the field for applications such as
forensics'” and minerology.'®"”

Maize, or corn (Zea mays), is one the most widely cultivated
grains in the world.”® Its commercial impact is more than 50
billion U.S. dollars alone.>' Maize is used as livestock feed, raw
material in industry, biofuel and as human food. In the current
study, we demonstrate that RS can be used for the confirmatory
detection and identification of plant pathogens on intact maize
kernels. We collected Raman spectra from individual maize
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kernels using a hand-held portable Rigaku Progeny ResQ
spectrometer (Rigaku Analytical Devices, Inc. Wilmington,
MA), equipped with a 1064 nm Nd:YAG laser. Experimental
details of the Raman measurements can be found in Figure SI.
Averaged spectra of healthy maize, as well as maize infected by
the fungal pathogens Aspergillus flavus, A. niger, Fusarium spp.,
or Diplodia spp. are shown in Figure 1.
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Figure 1. Raman spectra of healthy maize kernels (green) and maize
kernels infected by Aspergillus niger (brown), A. flavus (blue), Diplodia
spp. (black), and Fusarium spp. (red). Spectral acquisition time is 80 s,
power 200 mW. For each reported spectrum, 8—15 individual spectra
collected from different kernels were averaged. Due to a lack of an
internal standard, which can be used for spectral normalization, the
reported spectra normalized by 477 cm™ peak height for better
visualization. The spectra were baseline corrected by Rigaku Progeny
software. GRAMS/AI 7.0 (Thermo Galactic, Salem, NH) was used for
spectral processing. Spectra shown are raw baseline corrected, without
smoothing.

Typical Raman spectra of healthy kernels exhibit vibrational
bands originating from lignin, carbohydrates, proteins, and
carotenoids (Figure 1 and Table 1). Lignin shows two
vibrational peaks centered at 1600 and 1633 cm™'. The 1600
cm™" peak can be assigned to C—C ring stretching and
symmetric C—H vibration.”” The 1633 cm™ band originates
from C=C aromatic ring vibration.”> We found that these

bands nearly disappear in the spectra of Fusarium-infected

Table 1. Vibrational Bands and Their Assignments for
Healthy and Diseased Maize Kernels

band vibrational mode assignment

1658  C=O stretching (amide I) proteins””*

1633 C=C—C (ring) lignin**

1600  v(C—C) aromatic ring + 6(CH) lignin*>**

1547 —C=C- (in plane) carotenoids™

1523 —C=C- (in plane) carotenoids™

1458  5(CH) + 6(CH,) + 6(C—O—H) CH, CH,, carbohydrates'®
and COH deformations

1400 §(C—C-H) carbohydrates'®

1380  5(C—O—H), coupling of the CCH and COH
deformation modes

1337 ¥(C-0); 5(C—O—H)
1261  §(C—C—H) + §(0—C—H) + §(C—O—H)

1153 y(C—0-C), v(C—C) in glycosidic linkage,
asymmetric ring breathing

1126 v (C-0) + v(C-C) + §(C—0O-H)
1115 C—OH bending

1082 v(C-0) + v(C-C) + 6(C—O—H)
1052 v(C-0) + v(C-C) + 6(C—0O—-H)

carbohydrates'®

carbohydrates'®
carbohydrates' ¢

carbohydrates®”

carbohydrates'®
carbohydrates™®
carbohydrates'”
carbohydrates'®

1043 §(C—OH) carbohydrates®*°
1024 5(C—OH) carbohydrates**’
1003  v; (C—CH; stretching) and phenylalanine carotenoids®**

938  §(C-0-C) + 6(C—O-H) + v(C-0) a-1,4
glycosidic linkages

864  8(C—C-H) + 8(C—0—-C) glycosidic bond;
anomeric region

771 §(C-C-0)

carbohydrates'®
carbohydrates'®

carbohydrates'®

715 5(C—C—O0) related to glycosidic ring skeletal ~ carbohydrates'®
deformations

576  §(C—C-0) + 7(C-0) carbohydrates'®

527 S-S gauche—gauche—trans protein®’

477 CCO and CCC deformations; Related to carbohydrates'®

glycosidic ring skeletal deformations §(C—
C—C) + 7(C—0) scissoring of C—C—C and
out-of-plane bending of C—O

442 skeletal modes of pyranose ring carbohydrates'”

maize. This indicates significant degradation of lignin,
associated with Fusarium propagation and development in
maize kernels. We have also observed a change in the intensity
of lignin peaks in the spectra of A. flavus and A. niger, whereas
their intensity did not change much in the spectrum of Diplodia
(Figure S2). Our findings suggest that these spectral changes
are associated with the presence of pathogens in maize kernels.

A typical Raman spectrum of a protein exhibits a carbonyl
vibration of the peptide bond at 1640—1670 cm™, known as
the amide I band.”* We observed a distinct peak around 1658
cm™ in the spectra of Fusarium-infected maize kernels,
indicating that growth of this pathogen is strongly associated
with the deposition of protein in the maize kernels.

Vibrational bands around 1530 cm™ originate from —C=
C— in-plane vibrations and can be assigned to carotenoids
(Figure 1B).”> Longer chain polyenes in these molecules show
blue-shifted vibrational bands, whereas those with shorter
chains have red-shifted bands.

In all spectra of maize kernels, we observed two vibrational
bands centered at 1523 and 1547 cm™'. In the spectrum of
healthy maize kernels, carotenoids showed an intense peak at
1523 cm ™. In contrast, in all pathogen-infected maize kernels
except A. niger, the peak at 1547 cm™" was more intense than
the peak at 1523 cm™'. This suggests that growth of these
pathogens on maize kernels could be associated with
degradation and fragmentation of host carotenoids. Alter-
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Table 2. Accuracy of Classification by OPLS-DA for Each Class of Maize Kernel

members correct A. niger A. flavus

A. niger 10 100% 10 0

A. flavus 17 100% 0 17
Diplodia 10 100% 0 0
Fusarium 11 100% 0 0
healthy 29 100% 0 0

no class 0 0 0
total 77 100% 10 17
Fisher’s prob. 2.5e-033

Diplodia Fusarium healthy no class (YPred < 0)
0 0 0 0
0 0 0 0
10 0 0 0
0 11 0 0
0 0 29 0
0 0 0 0
10 11 29 0

natively, it is possible that these pathogens produce specific
short-chain carotenoids. Finally, observed spectral changes of
carotenoids in maize kernels could be attributed to their
conversion to apocarotenoids, signaling molecules that are
synthesized by plants as a stress response.”” Further studies are
required to elucidate the actual cause of the change in
carotenoids peaks in healthy and pathogen-infected corn. In
addition to the observed frequency shift, we also observed an
intensity reduction at the 1523 cm™' peak in in all infected
kernels, providing further support for our hypothesis that host
carotenoids are affected by fungal infection. Therefore, one may
expect that the 1547 cm™" band can be used as a marker of the
maize kernel healthiness. It was interesting to find that in the
Raman spectrum of A. niger, the two carotenoids peaks had
much more similar intensity ratio to a spectrum of healthy
kernel than in the spectra of diseased kernels. This suggests that
A. niger and A. flavus may have different metabolic strategies
and consequently cause dissimilar changes to maize carote-
noids. Electromagnetic excitation within 400—600 nm spectral
region can be used to do resonance Raman studies of maize
carotenoids.”® This will lead to a million-fold increase in their
signals allowing for better understanding of the structural
changes in the carotenoid component of maize associated with
fungal infections.

Carbohydrates, including monomeric sugars and starch, are
the major components of maize kernels.”” Therefore, most of
the observed vibrational bands originate from these mole-
cules.”® Vibrational bands at 1153, 938, and 864 cm™! are
associated with C—O—C vibration, which is typical for starch.
Raman bands at 1115, 1082, 1052, 1043, and 1024 cm™!
represent C—O—H vibrations (Figure 1C). Hydrolysis of starch
will result in an increase in monomeric sugars and,
consequently, the increase in intensities of C—O—H vibrations.
We observed such a change in C—O—C and C-O-H
vibrations in the spectra of Diplodia and A. flavus (Figures 1C
and S2). This indicates that pathogenic activity of these fungi in
maize kernels is associated with breakdown of maize starch to
monomeric sugars. We observed the opposite trend in the A.
niger and Fusarium-infected kernels. Specifically, the intensity of
C—0-C band increased in the spectra of A. niger and Fusarium
comparing to the spectrum of healthy maize (Figures 1C and
S2). This observation suggests that A. niger and Fusarium are
associated with conversion of maize monomeric sugars into
their polymeric hydrocarbons.

It is important to ask whether the proposed spectroscopic
approach allows for the detection of actual pathogens or the
observed spectral changes report only pathogen-related
structural changes of the maize kernel. A detailed spectral
analysis, which was discussed above, does not let us disentangle
these two possibilities. Work to address this question by the
spectroscopic analysis of all chemical components of those

plant pathogens, such as their metabolites and toxins, is under
way in our laboratory.

Next, we used multivariate data analysis” to determine
whether RS can be used for the quantitative detection and
identification of plant pathogens. All collected Raman spectra
were imported into SIMCA 14 (Umetrics, Ume3, Sweden) for
statistical analysis and scaled to unit variance to give all spectral
regions equal importance. Orthogonal partial least-squares
discriminant analysis (OPLS-DA) was performed to determine
the number of predicting and orthogonal significant compo-
nents and identify spectral re§ions that best explain the
separation between the classes.” Unlike the ordinary partial
least-squares discriminant analysis (PLS-DA), OPLS-DA
separates the systematic variation in spectral data into two
parts, one part (predictive) that explains the separation among
classes and the other (orthogonal) that does not account for
the separation of classes. In this iteration of OPLS-DA, the
wavenumbers with the variable importance (VIP) of less than
1.0 were excluded to reduce the noise and improve the
predictive power of the model.” The final model, containing 4
predictive components, 3 orthogonal components, and 391 out
of 512 original wavenumbers, was used to generate the
misclassification table (Table 2) and the loadings plot (Figure
2).
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Figure 2. Loading plot of the three predictive components (PC) in the
Raman spectra of maize kernels.

The first three predictive components (PC; Figure 2) explain
23%, 19%, and 18% of the variation between classes,
respectively, which collectively accounts for 60% of the total
class-to-class variation. Absolute intensities in the loadings
spectra are proportional to the percentage of the total variation
between classes explained by each wavenumber within each
component. The model identified the carbohydrates peak at
477 cm™ (PC1), lignin peaks at 1600 and 1633 cm™" (PC2),
the carotenoid band at 1547 cm™ (PC3), the peptide bond
vibration at 1658 cm™' (PC2) and the 1000—1160 cm ™" region
(PC1 and PC3) as the strongest predictors of the maize
pathogens, which supports the conclusions of our qualitative
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spectral analysis above. The model explained 97% of the
variation (R2X) in the spectra and 69% (R2Y) of the variation
between the classes. Furthermore, the model correctly assigned
all 77 spectra to their classes (Table 2). This indicates that
coupling of OPLS-DA with RS allows for a 100% accurate
detection and identification of these four pathogens on maize
kernels.

Our results clearly demonstrate that RS can be used for
confirmatory, noninvasive and nondestructive detection and
identification of plant pathogens directly on maize kernels. We
demonstrated that the combination of chemometric analysis
and RS enables us to distinguish between healthy and infected
kernels with 100% accuracy. Our results suggest that the
proposed spectroscopic approach can be used for pathogen
detection and identification on other crops, such as sorghum,
rice and wheat. This is extremely important to prevent
widespread pathogen propagation. Pathogen-infected crops
also contain highly toxic and carcinogenic compounds, such as
aflatoxin®® and fumonisin.*® Thus, the proposed spectroscopic
detection and identification of plant pathogens in intact grain
will help to reduce consumption of infected grain and minimize
aflatoxin- and fumonisin-induced cancer in numerous develop-
ing counties.
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The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acs.anal-
chem.8b00222.

Detailed description of spectra acquisition methods and
accompanying experimental setup are shown in Figure
S1. Relative intensity chart and corresponding table of
peak intensities at the given wavenumbers are shown in
Figure S2 (PDF).
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